版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列四个图案中,不是轴对称图案的是()A. B.C. D.2.4的算术平方根是()A.±4 B.4 C.±2 D.23.计算的结果是()A. B. C.y D.x4.对于,,,,,,其中分式有()A.个 B.个 C.个 D.个5.如果分式x-1x-1的值为零,那么xA.-1 B.0 C.1 D.±16.如图,平行四边形ABCD中,AB=6cm,AD=10cm,点P在AD边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有()A.1次 B.2次 C.3次 D.4次7.在△ABC中,AB=2cm,AC=5cm,若BC的长为整数,则BC的长可能是()A.2cm B.3cm C.6cm D.7cm8.如图1,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图2所示的长方形.通过计算剪拼前后阴影部分的面积,验证了一个等式,这则个等式是()A.(a+b)(a﹣b)=a2﹣b2 B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2 D.a(a﹣b)=a2﹣ab9.计算的结果是()A. B. C. D.10.的平方根是()A.2 B.-2 C.4 D.2二、填空题(每小题3分,共24分)11.在平面直角坐标系中,点在第三象限,则m的取值范围是______.12.如图所示,∠1=130°,则∠A+∠B+∠C+∠D+∠E+∠F的度数为_____.13.在实数范围内分解因式:____.14.多项式加上一个单项式后能称为一个完全平方式,请你写出一个符合条件的单项式__________.15.如图,在△ABC中,∠A=35°,∠B=90°,线段AC的垂直平分线MN与AB交于点D,与AC交于点E,则∠BCD=___________度.16.若,则=___________.17.我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为_____.18.某公司测试自动驾驶技术,发现移动中汽车“”通信中每个数据包传输的测量精度大约为0.0000018秒,请将数据0.0000018用科学计数法表示为__________.三、解答题(共66分)19.(10分)如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相等.20.(6分)结论:直角三角形中,的锐角所对的直角边等于斜边的一半.如图①,我们用几何语言表示如下:∵在中,,,∴.你可以利用以上这一结论解决以下问题:如图②,在中,,,,,(1)求的面积;(2)如图③,射线平分,点从点出发,以每秒1个单位的速度沿着射线的方向运动,过点分别作于,于,于.设点的运动时间为秒,当时,求的值.21.(6分)如图,已知:AD平分∠CAE,AD∥BC.(1)求证:△ABC是等腰三角形;(2)当∠CAE等于多少度时△ABC是等边三角形,证明你的结论.22.(8分)(1)如图1,点、分别是等边边、上的点,连接、,若,求证:(2)如图2,在(1)问的条件下,点在的延长线上,连接交延长线于点,.若,求证:.23.(8分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(-1,1),B(3,1),C(2,3).(1)作出关于轴对称的图形,并写出点的坐标;(2)求的面积.24.(8分)解不等式组.25.(10分)如图,直线l1:y=kx+4(k关0)与x轴,y轴分别相交于点A,B,与直线l2:y=mx(m≠0)相交于点C(1,2).(1)求k,m的值;(2)求点A和点B的坐标.26.(10分)如图所示,已知一次函数的图象与轴,轴分别交于点、.以为边在第一象限内作等腰,且,.过作轴于.的垂直平分线交与点,交轴于点.(1)求点的坐标;(2)在直线上有点,且点与点位于直线的同侧,使得,求点的坐标.(3)在(2)的条件下,连接,判断的形状,并给予证明.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据轴对称图形的定义逐项判断即得答案.【详解】解:A、是轴对称图案,故本选项不符合题意;B、不是轴对称图案,故本选项符合题意;C、是轴对称图案,故本选项不符合题意;D、是轴对称图案,故本选项不符合题意.故选:B.【点睛】本题考查了轴对称图形的定义,属于应知应会题型,熟知概念是关键.2、D【分析】如果一个正数x的平方等于a,即x2=a(x>0),那么这个正数x叫做a的算术平方根.【详解】解:4的算术平方根是2.故选D.【点睛】本题考查了算术平方根的定义,熟练掌握相关定义是解题关键.3、A【详解】原式,故选A.4、D【分析】根据分式的定义即可求出答案.【详解】,,,是分式,共4个;
故答案为:D.【点睛】本题考查分式的定义,解题的关键是正确理解分式的定义.5、A【解析】根据分式值为零的条件(分母不等于零,分子等于零)计算即可.【详解】解:∵x-1≠0∴x≠1∵∴x=±1∴x=-1故选:A【点睛】本题考查了分式值为0的条件,当分式满足分子等于0且分母不等于0时,分式的值为0,分母不等于0这一条件是保证分式有意义的前提在计算时经常被忽视.6、C【分析】易得两点运动的时间为12s,PD=BQ,那么以P、D、Q、B四点组成平行四边形平行四边形,列式可求得一次组成平行四边形,算出Q在BC上往返运动的次数可得平行的次数.【详解】解:∵四边形ABCD是平行四边形,∴BC=AD=12,AD∥BC,∵四边形PDQB是平行四边形,∴PD=BQ,∵P的速度是1cm/秒,∴两点运动的时间为12÷1=12s,∴Q运动的路程为12×4=48cm,∴在BC上运动的次数为48÷12=4次,第一次:12﹣t=12﹣4t,∴t=0,此时两点没有运动,∴点Q以后在BC上的每次运动都会有PD=QB,∴在运动以后,以P、D、Q、B四点组成平行四边形的次数有3次,故选C.【点睛】本题考查列了矩形的性质和平行线的性质.解决本题的关键是理解以P、D、Q、B四点组成平出四边形的次数就是Q在BC上往返运动的次数.7、C【解析】根据三角形的三边关系即可求出BC的范围,再选出即可.【详解】∵AB=2cm,AC=5cm∴BC,即BC,故选C.【点睛】此题主要考查三角形的三边关系,解题的关键是熟知三角形的三边关系:两边之和大于第三边,两边之差小于第三边.8、A【分析】分别计算出两个图形中阴影部分的面积即可.【详解】图1阴影部分面积:a2﹣b2,图2阴影部分面积:(a+b)(a﹣b),由此验证了等式(a+b)(a﹣b)=a2﹣b2,故选:A.【点睛】此题主要考查了平方差公式的几何背景,运用几何直观理解、解决平方差公式的推导过程,通过几何图形之间的数量关系对平方差公式做出几何解释.9、C【解析】根据同底数幂的运算法则,底数不变,指数相加计算即可.【详解】,故选:C.【点睛】考查了同底数幂的运算法则,熟记同底数的运算法则是解题的关键.10、D【分析】根据算术平方根的定义先求出,然后根据平方根的定义即可得出结论.【详解】解:∵=4∴的平方根是2故选D.【点睛】此题考查的是求一个数的算术平方根和平方根,掌握算术平方根的定义和平方根的定义是解决此题的关键.二、填空题(每小题3分,共24分)11、【解析】点在第三象限的条件是:横坐标是负数,纵坐标是负数,可得,求不等式的解即可.【详解】解:∵点在第三象限,∴点的横坐标是负数,纵坐标也是负数,即,解得,故答案为:.【点睛】本题考查各象限内点的坐标的符号特征以及解不等式,解决的关键是记住各象限内点的坐标的符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).12、260°.【分析】利用三角形的外角等于不相邻的两个内角之和以及等量代换进行解题即可【详解】解:如图:∠1=∠B+∠C,∠DME=∠A+∠E,∠ANF=∠F+∠D,∵∠1=∠DME+∠ANF=130°,∴∠A+∠B+∠C+∠D+∠E+∠F=2×130°=260°.故答案为260°.【点睛】本题主要考查三角形的外角性质,关键在于能够把所有的外角关系都找到13、【分析】将原式变形为,再利用平方差公式分解即可得.【详解】===,故答案为:.【点睛】本题主要考查实数范围内分解因式,解题的关键是熟练掌握完全平方公式和平方差公式.14、12n【分析】首末两项是3n和2这两个数的平方,那么中间一项为加上或减去2x和1积的2倍,据此解答即可.【详解】由题意得,可以添加12n,此时,符合题意.故答案为:12n(答案不唯一).【点睛】本题考查了完全平方公式,熟练掌握完全平方公式(a±b)2=a2±2ab+b2是解答本题的关键.15、1【分析】根据直角三角形的性质可得∠ACB=55°,再利用线段垂直平分线的性质可得AD=CD,根据等边对等角可得∠A=∠ACD=35°,进而可得∠BCD的度数.【详解】∵∠A=35°,∠B=90°,∴∠ACB=55°,∵MN是线段AC的垂直平分线,∴AD=CD,∴∠A=∠ACD=35°,∴∠BCD=1°,故答案为:1.【点睛】此题主要考查了直角三角形的性质,以及线段垂直平分线的性质,关键是掌握在直角三角形中,两个锐角互余,线段垂直平分线上任意一点,到线段两端点的距离相等.16、【解析】由,得x−y=y,即x=y,故=.故答案为.17、20°.【分析】依据题意,设出顶角度数,根据“特征值”可知底角度数,再由三角形内角和定理即可求得.【详解】如图.∵△ABC中,AB=AC,∴∠B=∠C,∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,∴∠A:∠B=1:4,∵∠A+∠B+∠C=180°,∴∠A+4∠A+4∠A=180°,即9∠A=180°,∴∠A=20°,故答案为:20°.【点睛】本题主要考查了等腰三角形的性质以及三角形内角和定理的知识,灵活运用这部分知识是解决本题的关键.18、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】.
故答案为:.【点睛】本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.三、解答题(共66分)19、见解析.【分析】到OA、OB距离相等的点在∠AOB的平分线上,到C,D距离相等的点在线段CD的垂直平分线上,所以P点是∠AOB的平分线与线段CD的垂直平分线的交点.【详解】解:如图所示,∠AOB的平分线与线段CD的垂直平分线的交点P就是所求的点:【点睛】本题考查了作图−应用与设计作图,角平分线的判定以及线段垂直平分线的判定,到两条相交直线距离相等的点在这两条相交直线夹角的平分线上;到两点距离相等的点,在这两点连线的垂直平分线上.20、(1);(2)或【分析】(1)过点C作CH⊥AB于点H,则∠CAH=90°,即可求出∠ACH=30°,求出AH,根据勾股定理即可求解;(2)分两种情况讨论①当点P在△ABC内部时②当点P在△ABC外部时,连结PB、PC,利用面积法进行求解即可.【详解】(1)过点C作CH⊥AB于点H,则∠CAH=90°,如图②∵∴∠ACH=30°∴∴∴(2)分两种情况讨论①当点P在△ABC内部时,如图③所示,连结PB、PC.设PE=PF=PG=x∵∴∴∵AM平分∠BAC,∴,∴,∴∴②当点P在△ABC外部时,如图④所示,连结PB、PC.设PE=PF=PG=x,∵∴,解得由①知,,又,∴,∴∴∴当PE=PF=PG时,或【点睛】本题考查的是含30°角的直角三角形的性质,掌握勾股定理及三角形的面积法是关键.21、(1)证明见解析;(2)120°,证明见解析.【分析】(1)由已知条件易得∠EAD=∠CAD,∠EAD=∠B,∠CAD=∠C,从而可得∠B=∠C,进一步可得AB=AC,由此即可得到△ABC是等腰三角形;(2)由(1)可知△ABC是等腰三角形,因此当∠BAC=60°,即∠CAE=120°时,△ABC是等边三角形.【详解】解:(1)∵AD平分∠CAE,∴∠EAD=∠CAD,∵AD∥BC,∴∠EAD=∠B,∠CAD=∠C,∴∠B=∠C,∴AB=AC.故△ABC是等腰三角形.(2)当∠CAE=120°时,△ABC是等边三角形,理由如下:∵∠CAE=120°,∴∠BAC=180°-∠CAE=180°-120°=60°,又∵AB=AC,∴△ABC是等边三角形.22、(1)详见解析;(2)详见解析【分析】(1)根据等边三角形的性质可得AC=CB,∠ABC=∠A=∠ACB=60°,然后利用SAS即可证出△AEC≌△CDB,从而得出BD=CE;(2)根据全等三角形的性质可得∠CBD=∠ACE,从而证出∠ABD=∠ECB,然后根据等边对等角可得∠BFC=∠BCF,从而证出∠H=∠ECH,最后根据等角对等边即可证出结论.【详解】证明:(1)∵△ABC为等边三角形∴AC=CB,∠ABC=∠A=∠ACB=60°在△AEC和△CDB中∴△AEC≌△CDB(SAS)∴BD=CE(2)∵△AEC≌△CDB∴∠CBD=∠ACE∴∠ABC-∠CBD=∠ACB-∠ACE∴∠ABD=∠ECB又∵BF=BC,∴∠BFC=∠BCF∵∠ABD+∠H=∠BFC,∠ECB+∠ECH=∠BCF∴∠H=∠ECH,∴EH=EC【点睛】此题考查的是等边三角形的性质、全等三角形的判定及性质和等腰三角形的判定及性质,掌握等边三角形的性质、全等三角形的判定及性质、等边对等角和等角对等边是解决此题的关键.23、(1)作图见解析;.(2)【分析】(1)分别作出点A,B,C关于x轴的对称点,再首尾顺次连接即可得;(2)直接求出三角形的底边和高,根据三角形的面积公式,即可得到答案.【详解】解:(1)如图:为所求;点的坐标为:(2,);(2)根据题意,,边上的高为2,∴.【点睛】本题主要考查作图——轴对称变换,熟练掌握轴对称变换的定义和性质,并据此得出变换后的对应点是解题的关键.24、不等式组的解为x≤-1.【分析】分别求出每一个不等式的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来,即可得不等式组的解集.【详解】解:由①得x≤-1,由②得x<1,把①,②两个不等式的解表示在数轴上,如下图:∴不等式组的解为x≤-1.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024智能化环保监测系统建设合同范本3篇
- 23《海底世界》说课稿-2024-2025学年三年级下册语文统编版
- 专项工程造价咨询修改合同:2024版一
- 2025版高端酒店窗帘制作与安装合作协议3篇
- 6 将相和说课稿-2024-2025学年五年级上册语文统编版
- 哈姆雷特悲剧情节读后感
- 2024淘宝年度合作伙伴产品研发合同模板3篇
- 2024年股权收购与债务重组合同3篇
- 2024年长春婚姻解除合同样本3篇
- 个人承包2024年度生产线能源管理合同3篇
- 房地产项目开发合作协议书
- ISO15189培训测试卷及答案
- JJG(交通) 171-2021 超声式成孔质量检测仪检定规程
- QCT457-2023救护车技术规范
- 气象卫星技术在军事中的应用
- 《中国大熊猫》课件大纲
- 新课标背景下的大单元教学研究:国内外大单元教学发展与演进综述
- (正式版)HGT 4339-2024 机械设备用涂料
- 2024年医疗器械销售总结
- 基于物联网的支护机械远程监控系统
- SLT278-2020水利水电工程水文计算规范
评论
0/150
提交评论