




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图所示,有一条线段是()的中线,该线段是().A.线段GH B.线段AD C.线段AE D.线段AF2.人数相同的八年级甲班、乙班学生,在同一次数学单元测试中,班级平均分和方差如下:分,(分),(分),则成绩较为稳定的班级是()A.甲班 B.乙班 C.两班成绩一样稳定 D.无法确定3.如图,小明将几块六边形纸片分别剪掉了一部分(虚线部分),得到了一个新多边形,若新多边形的内角和是其外角和的倍,则对应的图形是()A. B. C. D.4.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为()A. B.4 C. D.5.平面直角坐标系中,点P(-3,4)关于轴对称的点的坐标为()A.(3,4) B.(-3,-4) C.(-3,4) D.(3,-4)6.化简的结果()A. B. C. D.7.下列命题:①同旁内角互补,两直线平行;②若,则;③对角线互相垂直平分的四边形是正方形;④对顶角相等.其中逆命题是真命题的有()A.1个 B.2个 C.3个 D.4个8.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙9.点P(-2,3)关于x轴的对称点的坐标为()A.(2,3) B.(-2,-3) C.(2,-3) D.(-3,2)10.小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是()A.①,② B.①,④ C.③,④ D.②,③二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“”方向排列,如,,,,,根据这个规律,第2019个点的坐标为___.12.如图,在中,,,垂足分别为,,,交于点.请你添加一个适当的条件,使≌.添加的条件是:____.(写出一个即可)13.当x_________时,分式分式有意义14.若m>n,则m-n_____0.(填“>”“<”“=”)15.华为的麒麟990芯片采用7nm(1nm=0.000000001m)工艺,用指甲盖的大小集成了多达103亿个晶体管.其中7nm可用科学记数法表示为_____________米.16.比较大小:_________(填“>”或“<”)17.如图,△ABC中,∠C=90°,∠B=15°,AB的垂直平分线交BC于D,交AB于E.若BD+AC=3a,则AC=_________.(用含a的式子表示)18.如图,∠AOB=30°,OP平分∠AOB,PC∥OB交OA于C,PD⊥OB于D.如果PC=8,那么PD等于____________.三、解答题(共66分)19.(10分)(1)如图①,在△ABC中,∠C=90°,请用尺规作图作一条直线,把△ABC分割成两个等腰三角形,并说明理由(保留作图痕迹,不写作法);(2)已知内角度数的两个三角形如图②、图③所示,能否分别画一条直线把他们分割成两个等腰三角形?若能,请写出分割成的两个等腰三角形顶角的度数.20.(6分)(1)如图1,是的中线,,求的取值范围,我们可以延长到点,使,连接(如图2所示),这样就可以求出的取值范围,从而得解,请写出解题过程;(2)在(1)问的启发下,解决下列问题:如图3,是的中线,交于点,交于点,且,求证:.21.(6分)如图,在平面直角坐标系中,△AOB是直角三角形,∠AOB=90°,边AB与y轴交于点C.(1)若∠A=∠AOC,试说明:∠B=∠BOC;(2)延长AB交x轴于点E,过O作OD⊥AB,若∠DOB=∠EOB,∠A=∠E,求∠A的度数;(3)如图,OF平分∠AOM,∠BCO的平分线交FO的延长线于点P,∠A=40°,当△ABO绕O点旋转时(边AB与y轴正半轴始终相交于点C),问∠P的度数是否发生改变?若不变,求其度数;若改变,请说明理由.22.(8分)为开拓学生的视野,全面培养和提升学生的综合素质,让学生感受粤东古城潮州的悠久历史,某中学组织八年级师生共420人前往潮州开展研学活动.学校向租车公司租赁A、B两种车型接送师生往返,若租用A型车3辆,B型车5辆,则空余15个座位;若租用A型车5辆,B型车3辆,则15人没座位.(1)求A、B两种车型各有多少个座位?(2)租车公司目前B型车只有6辆,若A型车租金为1800元/辆,B型车租金为2100元/辆,请你为学校设计使座位恰好坐满师生且租金最少的租车方案.23.(8分)如图,三角形ABC中,AC=BC,D是BC上的一点,连接AD,DF平分∠ADC交∠ACB的外角∠ACE的平分线于F.(1)求证:CF∥AB;(2)若∠DAC=40°,求∠DFC的度数.24.(8分)探究活动:()如图①,可以求出阴影部分的面积是__________.(写成两数平方差的形式)()如图②,若将阴影部分裁剪下来,重新拼成一个长方形,面积是__________.(写成多项式乘法的形式)()比较图①、图②阴影部分的面积,可以得到公式__________.知识应用,运用你所得到的公式解决以下问题:()计算:.()若,,求的值.25.(10分)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲a771.2乙7b8c(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员.26.(10分)(1)如图①,OP是∠MON的平分线,点A为OP上一点,请你作一个∠BAC,B、C分别在OM、ON上,且使AO平分∠BAC(保留作图痕迹);(2)如图②,在△ABC中,∠ACB是直角,∠B=60°,△ABC的平分线AD,CE相交于点F,请你判断FE与FD之间的数量关系(可类比(1)中的方法);(3)如图③,在△ABC中,如果∠ACB≠90°,而(2)中的其他条件不变,请问(2)中所得的结论是否仍然成立?若成立,请证明,若不成立,说明理由.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得.【详解】根据三角形中线的定义知:线段AD是△ABC的中线.故选B.【点睛】本题考查了三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线.2、B【分析】根据两个班级的方差的大小即可得到答案【详解】∵分,(分),(分),且160<200,∴乙班的成绩较稳定,故选:B.【点睛】此题考查方差的大小,利用方差对事件做出判断.3、A【分析】根据新多边形的内角和为,n边形的内角和公式为,由此列方程求解即可.【详解】设这个新多边形的边数是,
则,
解得:,
故选:A.【点睛】本题考查了多边形外角和与内角和.此题比较简单,只要结合多边形的内角和公式来寻求等量关系,构建方程即可求解.4、B【分析】求出AD=BD,根据∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根据ASA证△FBD≌△CAD,推出CD=DF即可.【详解】解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC和△BDF中,∴△ADC≌△BDF,∴DF=CD=4,故选:B.【点睛】此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.5、B【分析】根据点关于坐标轴对称的特点,即可得到答案.【详解】解:∵关于x轴对称,则横坐标不变,纵坐标变为相反数,∴点P()关于x轴对称的点坐标为:(),故选:B.【点睛】本题考查了轴对称的性质,解题的关键是熟练掌握点关于坐标轴对称的特点,从而进行解题.6、D【分析】根据题意先进行通分后,利用平方差公式进行因式分解,进而上下约分即可得出答案.【详解】解:故选:D.【点睛】本题考查分式的加减运算,熟练掌握分式的通分约分法则以及运用平方差公式因式分解是解题的关键.7、B【分析】首先写出各个命题的逆命题,然后进行判断即可.【详解】解:①同旁内角互补,两直线平行,其逆命题:两直线平行,同旁内角互补是真命题;
②若,则,其逆命题:若,则是假命题;③对角线互相垂直平分的四边形是正方形,其逆命题:正方形的对角线互相垂直平分是真命题;
④对顶角相等,其逆命题:相等的角是对顶角是假命题;
故选:B.【点睛】本题考查了命题与定理,判断一件事情的语句,叫做命题,也考查了逆命题.8、B【解析】分析:根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.详解:乙和△ABC全等;理由如下:在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲与△ABC全等;故选B.点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9、B【分析】根据平面直角坐标系中关于x轴对称的点,横坐标相同,纵坐标互为相反数解答.【详解】解:根据平面直角坐标系中对称点的规律可知,点P(-2,3)关于x轴的对称点坐标为(-2,-3).
故选:B.【点睛】主要考查了平面直角坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:
(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;
(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;
(3)关于原点对称的点,横坐标与纵坐标都互为相反数.10、D【分析】确定有关平行四边形,关键是确定平行四边形的四个顶点,由此即可解决问题.【详解】只有②③两块角的两边互相平行,且中间部分相联,角的两边的延长线的交点就是平行四边形的顶点,∴带②③两块碎玻璃,就可以确定平行四边形的大小.故选D.【点睛】本题考查平行四边形的定义以及性质,解题的关键是理解如何确定平行四边形的四个顶点,四个顶点的位置确定了,平行四边形的大小就确定了,属于中考常考题型.二、填空题(每小题3分,共24分)11、(45,6)【分析】根据图形推导出:当n为奇数时,第n个正方形每条边上有(n+1)个点,连同前边所有正方形共有(n+1)2个点,且终点为(1,n);当n为偶数时,第n个正方形每条边上有(n+1)个点,连同前边所以正方形共有(n+1)2个点,且终点为(n+1,0).然后根据2019=452-6,可推导出452是第几个正方形连同前边所有正方形共有的点,最后再倒推6个点的坐标即为所求.【详解】解:由图可知:第一个正方形每条边上有2个点,共有4=22个点,且终点为(1,1);第二个正方形每条边上有3个点,连同第一个正方形共有9=32个点,且终点为(3,0);第三个正方形每条边上有4个点,连同前两个正方形共有16=42个点,且终点为(1,3);第四个正方形每条边上有5个点,连同前两个正方形共有25=52个点,且终点为(5,0);故当n为奇数时,第n个正方形每条边上有(n+1)个点,连同前边所有正方形共有(n+1)2个点,且终点为(1,n);当n为偶数时,第n个正方形每条边上有(n+1)个点,连同前边所以正方形共有(n+1)2个点,且终点为(n+1,0).而2019=452-6n+1=45解得:n=44由规律可知,第44个正方形每条边上有45个点,且终点坐标为(45,0),由图可知,再倒着推6个点的坐标为:(45,6).故答案为:(45,6).【点睛】此题考查的是图形的探索规律题,根据图形探索规律并归纳公式是解决此题的关键.12、AF=CB或EF=EB或AE=CE【分析】根据垂直关系,可以判断△AEF与△CEB有两对对应角相等,就只需要找它们的一对对应边相等就可以了.【详解】∵AD⊥BC,CE⊥AB,垂足分别为D、E,
∴∠BEC=∠AEC=∠ADB=∠ADC=90°,∵∠B+∠BAD=90°,∠B+∠BCE=90°,∴∠BAD=∠BCE,
所以根据AAS添加AF=CB或EF=EB;
根据ASA添加AE=CE.
可证△AEF≌△CEB.
故答案为:AF=CB或EF=EB或AE=CE.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.13、≠-1【分析】分式有意义使分母不为0即可.【详解】分式有意义x+1≠0,x≠-1.故答案为:≠-1.【点睛】本题考查分式有意义的条件问题,掌握分式有意义的知识分母不为零,会用分式有意义列不等式,会解不等式是关键.14、【分析】根据不等式的性质即可得.【详解】两边同减去n得,,即故答案为:.【点睛】本题考查了不等式的性质:两边同减去一个数,不改变不等号的方向,熟记性质是解题关键.15、7×10-9【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】7nm=0.000000007m=7×10-9m故填:7×10-9.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16、>【解析】因为分母相同所以比较分子的大小即可,可以估算的整数部分,然后根据整数部分即可解决问题.【详解】∵,∴1>1,∴.故答案为:>.【点睛】本题考查了实数大小的比较,比较两个实数的大小,可以采用作差法、取近似值法、比较n次方的方法等.当分母相同时比较分子的大小即可.17、a【分析】利用线段垂直平分线的性质得出AD=BD,然后根据三角形的外角的性质求得∠ADC=30°,最后由直角三角形中的30°角所对的直角边是斜边的一半可求出AC的长度.【详解】解:连接AD.
∵AB的垂直平分线交BC于D,交AB于E,
∴AD=BD,∴∠B=∠BAD=15°.∴∠ADC=30°,
又∠C=90°,∴AC=AD=BD=(3a-AC),∴AC=a.
故答案为:a.【点睛】本题考查了线段垂直平分线的性质以及含30°的直角三角形的性质,正确作出辅助线是解题的关键.18、1【分析】根据角平分线的性质,角平分线上的点到两角的距离相等,因而过P作PE⊥OA于点E,则PD=PE,因为PC∥OB,根据三角形的外角的性质得到:∠ECP=∠COP+∠OPC=30°,在直角△ECP中求得PD的长.【详解】解:过P作PE⊥OA于点E,
∵OP平分∠AOB,PD⊥OB于D∴PD=PE,∵PC∥OB∴∠OPC=∠POD,
又∵OP平分∠AOB,∠AOB=30°,
∴∠OPC=∠COP=15°,
∠ECP=∠COP+∠OPC=30°,
在直角△ECP中,则PD=PE=1.
故答案为:1.【点睛】本题主要考查了角平分线的性质和含有30°角的直角三角形的性质,正确作出辅助线是解决本题的关键.三、解答题(共66分)19、(1)见解析;(2)图②能,顶角分别是132°和84°,图③不能【分析】(1)本题中,只要找到斜边中点,然后连接直角顶点和斜边中点,那么分成的两个三角形就是等腰三角形.那么只要作AC的垂直平分线就可以了.AC的垂直平分线与AB的交点就是AB的中点;(2)本题要先根据三角形的内角和求出另一角的度数,然后看看是否能分成等腰三角形,图2可以将∠B分成24°和48°.图3不能分成等腰三角形.【详解】(1)作线段AC的垂直平分线,交于点,交于点;过点、作直线.直线即为所求.理由:∵为的垂直平分线,∴,∴.∵,,∴,,∴,∴.(2)图②能画一条直线把它分割成两个等腰三角形,分割成的两个等腰三角形的顶角分别是和.图③不能分割成两个等腰三角形..【点睛】本题主要考查了直角三角形的性质和三角形的内角和,等腰三角形的判定等知识点.注意本题作图中的理论依据是直角三角形斜边上的中线等于斜边的一半.20、(1);(2)见解析.【分析】(1)延长到点,使,连接,易证,从而得,根据三角形三边关系,可得,进而即可求解;(2)先证,结合,可得,结合,即可得到结论.【详解】(1),(SAS),∴,∴在中,,即:,∴的范围是:;(2)延长到点,使,连接,由(1)知:,,,,,,,.【点睛】本题主要考查三角形全等的判定和性质定理,三角形三边的关系,等腰三角形的性质和判定定理,添加辅助线,构造全等三角形,是解题的关键.21、⑴证明解析;(2)30°;(3)∠P的度数不变,∠P=25°.【分析】(1)由直角三角形两锐角互余及等角的余角相等即可证明;(2)由直角三角形两锐角互余、等量代换求得∠DOB=∠EOB=∠OAE=∠E;然后根据外角定理知∠DOB+∠EOB+∠OEA=90°;从而求得∠DOB=30°,即∠A=30°;(3)由角平分线的性质知∠FOM=45°-∠AOC①,∠PCO=∠A+∠AOC②,根据①②解得∠PCO+∠FOM=45°+∠A,最后根据三角形内角和定理求得旋转后的∠P的度数.【详解】解⑴∵△AOB是直角三角形∴∠A+∠B=90°,∠AOC+∠BOC=90°∵∠A=∠AOC∴∠B=∠BOC⑵∵∠A+∠ABO=90°,∠DOB+∠ABO=90°∴∠A=∠DOB,即∠DOB=∠EOB=∠OAE=∠OEA∵∠DOB+∠EOB+∠OEA=90°∴∠A=30°⑶∠P的度数不变,∠P=25°∵∠AOM=90°-∠AOC,∠BCO=∠A+∠AOC又OF平分∠AOM,CP平分∠BCO∴∠FOM=45°-∠AOC,∠PCO=∠A+∠AOC∴∠P=180°-(∠PCO+∠FOM+90°)=45°-∠A=25°22、(1)每辆A型车有45个座位,每辆B型车有60个座位;(2)租4辆A型车、4辆B型车所需租金最少【分析】(1)设每辆A型车有x个座位,每辆B型车有y个座位,根据“若租用A型车3辆,B型车5辆,则空余15个座位;若租用A型车5辆,B型车3辆,则15人没座位”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设租m辆A型车,n辆B型车,根据所租车辆的座位恰好坐满,即可得出关于m,n的二元一次方程,结合m,n为非负整数且n≤6,即可得出各租车方案,再求出各租车方案所需费用,比较后即可得出结论.【详解】解:(1)设每辆型车有个座位,每辆型车有个座位,依题意,得:,解得:.答:每辆型车有45个座位,每辆型车有60个座位.(2)设租辆型车,辆型车,依题意,得:,.,均为非负整数,当时,,,不合题意,舍去;当时,;当时,,共有两种租车方案,方案1:租4辆型车,4辆型车;方案2:租8辆型车,1辆型车.方案1所需费用为(元;方案2所需费用为(元.,组4辆型车、4辆型车所需租金最少.【点睛】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程.23、(1)详见解析;(2)20°.【分析】(1)根据等边对等角得到∠ABC=∠BAC,由三角形外角的性质得到∠ACE=∠B+∠BAC=2∠ABC,由角平分线的定义得到∠ACE=2∠FCE,等量代换得到∠ABC=∠FCE,根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和三角形外角的性质即可得到结论.【详解】(1)证明:∵AC=BC,∴∠ABC=∠CAB,∴∠ACE=∠ABC+∠CAB=2∠ABC∵CF是∠ACE的平分线,∴∠ACE=2∠FCE∴2∠ABC=2∠FCE,∴∠ABC=∠FCE,∴CF∥AB;(2)∵CF是∠ACE的平分线,∴∠ACE=2∠FCE=∠ADC+∠DAC∵DF平分∠ADC,∴∠ADC=2∠FDC;∴2∠FCE=∠ADC+∠DAC=2∠FDC+∠DAC,∴2∠FCE﹣2∠FDC=∠DAC∵∠DFC=∠FCE﹣∠FDC∴2∠DFC=2∠FCE﹣2∠FDC=∠DAC=40°∴∠DFC=20°.【点睛】此题考查的是等腰三角形的性质、三角形外角的性质和角平分线的定义,掌握等边对等角、三角形外角的性质和角平分线的定义是解决此题的关键.24、();();();应用(1)a2+2ab+b2-4c2;(2).【详解】解:(1)阴影部分的面积是:a2-b2,
故答案是:a2-b2;
(2)长方形的面积是(a+b)(a-b),
故答案是:(a+b)(a-b);
(3)可以得到公式:a2-b2=(a+b)(a-b),
故答案是:a2-b2=(a+b)(a-b);
应用:(1)原式=(a+b)2−4c2
=a2+2ab+b2-4c2;
(2)4x2-9y2=(2x+3y)(2x-3y)=10,
由4x+6y=6得2x+3y=3,
则3(2x-3y)=10,
解得:2x-3y=.25、(1)a=7,b=7.5,c=4.2;(2)派乙队员参赛,理由见解析【分析】(1)根据加权平均数的计算公式,中位数的确定方法及方差的计算公式即可得到a、b、c的值;(2)根据平均数、中位数、众数、方差依次进行分析即可得到答案.【详解】(1),将乙射击的环数重新排列为:3、4、6、7、7、8、8、8、9、10,∴乙射击的中位数,∵乙射击的次数是10次,∴=4.2;(2)从平均成绩看,甲、乙的成绩相等,都是7环;从中位数看,甲射中7环以上的次数小于乙;从众数看,甲射中7环的次数最多,而乙射中8环的次数最多;从方差看,甲的成绩比乙稳定,综合以上各因素,若派一名同学参加比赛的话,可选择乙参赛,因为乙获得高分的可能性
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 品牌年服务合同
- 北京体育赛事策划及执行合同
- 珠宝销售买卖合同
- 建筑工程施工合作协议
- 新能源电动车充电站合作合同
- 机器人技术转让协议
- 公司销售业务员合同协议
- 三农村电商供应链管理与优化方案
- 个体工商户商铺租赁合同
- 影视制作行业版权使用许可合同
- 深度学习视角下“尺规作图”教学策略
- 2024-2030中国半导体阀门及管接头市场现状研究分析与发展前景预测报告
- 公务员面试考官培训
- 缤纷天地美食街运营方案
- 小学数学跨学科学习
- 2024年青岛港湾职业技术学院单招职业技能测试题库及答案解析
- 提高留置针规范使用率
- 4月23日幼儿园世界读书日读书绘本名人读书故事春暖花开日正是读书时课件
- 指导青年教师课堂教学活动方案
- 免疫学基础与病原生物学课件
- 2022版义务教育(地理)课程标准(附课标解读)
评论
0/150
提交评论