贵州遵义市达兴中学2025届九上数学期末质量跟踪监视试题含解析_第1页
贵州遵义市达兴中学2025届九上数学期末质量跟踪监视试题含解析_第2页
贵州遵义市达兴中学2025届九上数学期末质量跟踪监视试题含解析_第3页
贵州遵义市达兴中学2025届九上数学期末质量跟踪监视试题含解析_第4页
贵州遵义市达兴中学2025届九上数学期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州遵义市达兴中学2025届九上数学期末质量跟踪监视试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,AB是半圆的直径,AB=2r,C、D为半圆的三等分点,则图中阴影部分的面积是()。A.πr2 B.πr2 C.πr2 D.πr22.如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m的竹竿的影长是0.8m,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),他先测得留在墙壁上的影高为1.2m,又测得地面的影长为2.6m,请你帮她算一下,树高是()A.4.25m B.4.45m C.4.60m D.4.75m3.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是()A. B. C. D.4.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A.168(1﹣x)2=108 B.168(1﹣x2)=108C.168(1﹣2x)=108 D.168(1+x)2=1085.估计,的值应在()A.1和2之间 B.2和3之间 C.3和4之间 D.4和5之间6.将点A(2,1)向右平移2个单位长度得到点A′,则点A′的坐标是()A.(0,1) B.(2,﹣1) C.(4,1) D.(2,3)7.如图所示,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴于点A,点C在函数y=(x>0)的图象上,若OA=1,则k的值为()A.4 B.2 C.2 D.8.已知点P在线段AB上,且AP∶PB=2∶3,那么AB∶PB为()A.3∶2 B.3∶5 C.5∶2 D.5∶39.过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF,若AB,∠DCF30°,则EF的长为().A.2 B.3 C. D.10.如图是某个几何体的三视图,该几何体是()A.长方体 B.圆锥 C.三棱柱 D.圆柱11.如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段AB,则点B的对应点B′的坐标是()A.(-4,1) B.(-1,2) C.(4,-1) D.(1,-2)12.下列方程中,为一元二次方程的是()A.2x+1=0; B.3x2-x=10; C.; D..二、填空题(每题4分,共24分)13.抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是____.14.某中学去年举办竞赛,颁发一二三等奖各若干名,获奖人数依次增加,各获奖学生获得的奖品价值依次减少(奖品单价都是整数元),其中有3人获得一等奖,每人获得的奖品价值34元,二等奖的奖品单价是5的倍数,获得三等奖的人数不超过10人,并且获得二三等奖的人数之和与二等奖奖品的单价相同.今年又举办了竞赛,获得一二三等奖的人数比去年分别增加了1人、2人、3人,购买对应奖品时发现单价分别上涨了6元、3元、2元.这样,今年购买奖品的总费用比去年增加了159元.那么去年购买奖品一共花了__________元.15.点在线段上,且.设,则__________.16.在一个不透明的盒子里有2个红球和个白球,这些求除颜色外其余完全相同,摇匀后随机摸出一个,摸出红球的概率是,则的值为__________.17.如图,在半径为的中,的长为,若随意向圆内投掷一个小球,小球落在阴影部分的概率为______________.18.计算:sin260°+cos260°﹣tan45°=________.三、解答题(共78分)19.(8分)已知二次函数的图像是经过、两点的一条抛物线.(1)求这个函数的表达式,并在方格纸中画出它的大致图像;(2)点为抛物线上一点,若的面积为,求出此时点的坐标.20.(8分)如图,已知一次函数与反比例函数的图象交于A,B两点.(1)求的面积;(2)观察图象,可知一次函数值小于反比例函数值的x的取值范围是.21.(8分)如图,在直角坐标系中,抛物线y=ax2+bx-2与x轴交于点A(-3,0)、B(1,0),与y轴交于点C.(1)求抛物线的函数表达式.(2)在抛物线上是否存在点D,使得△ABD的面积等于△ABC的面积的倍?若存在,求出点D的坐标;若不存在,请说明理由.(3)若点E是以点C为圆心且1为半径的圆上的动点,点F是AE的中点,请直接写出线段OF的最大值和最小值.22.(10分)如图,二次函数y=ax2+bx+c的图象与x轴相交于点A(﹣1,0)、B(5,0),与y轴相交于点C(0,).(1)求该函数的表达式;(2)设E为对称轴上一点,连接AE、CE;①当AE+CE取得最小值时,点E的坐标为;②点P从点A出发,先以1个单位长度/的速度沿线段AE到达点E,再以2个单位长度的速度沿对称轴到达顶点D.当点P到达顶点D所用时间最短时,求出点E的坐标.23.(10分)如图,直线与双曲线在第一象限内交于两点,已知.求的值及直线的解析式;根据函数图象,直接写出不等式的解集.24.(10分)在Rt△ABC中,∠ACB=90°,AC=1,记∠ABC=α,点D为射线BC上的动点,连接AD,将射线DA绕点D顺时针旋转α角后得到射线DE,过点A作AD的垂线,与射线DE交于点P,点B关于点D的对称点为Q,连接PQ.(1)当△ABD为等边三角形时,①依题意补全图1;②PQ的长为;(2)如图2,当α=45°,且BD=时,求证:PD=PQ;(3)设BC=t,当PD=PQ时,直接写出BD的长.(用含t的代数式表示)25.(12分)如图,为了测量山坡上一棵树PQ的高度,小明在点A处利用测角仪测得树顶P的仰角为450,然后他沿着正对树PQ的方向前进10m到达B点处,此时测得树顶P和树底Q的仰角分别是600和300,设PQ垂直于AB,且垂足为C.(1)求∠BPQ的度数;(2)求树PQ的高度(结果精确到0.1m,)26.一只不透明的袋子中装有1个红球和1个白球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,记录颜色后放回、搅匀,这样连续共计摸3次.(1)用树状图列出所有可能出现的结果;(2)求3次摸到的球颜色相同的概率.

参考答案一、选择题(每题4分,共48分)1、D【分析】连接OC、OD,利用同底等高的三角形面积相等可知阴影部分的面积等于扇形OCD的面积,然后计算扇形面积就可.【详解】连接OC、OD.∵点C,D为半圆的三等分点,AB=1r,∴∠AOC=∠BOD=∠COD=180°÷3=60°,OA=r.∵OC=OD,∴△COD是等边三角形,∴∠OCD=60°,∴∠OCD=∠AOC=60°,∴CD∥AB,∴△COD和△CDA等底等高,∴S△COD=S△ACD,∴阴影部分的面积=S扇形CODπr1.故选D.【点睛】本题考查了扇形面积求法,利用已知得出理解阴影部分的面积等于扇形OCD的面积是解题的关键.2、B【分析】此题首先要知道在同一时刻任何物体的高与其影子的比值是相同的,所以竹竿的高与其影子的比值和树高与其影子的比值相同,利用这个结论可以求出树高.【详解】如图,设BD是BC在地面的影子,树高为x,

根据竹竿的高与其影子的比值和树高与其影子的比值相同得而CB=1.2,

∴BD=0.96,

∴树在地面的实际影子长是0.96+2.6=3.56,

再竹竿的高与其影子的比值和树高与其影子的比值相同得,

∴x=4.45,

∴树高是4.45m.

故选B.【点睛】抓住竹竿的高与其影子的比值和树高与其影子的比值相同是关键.3、B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是.故选B.考点:概率.4、A【分析】设每次降价的百分率为x,根据降价后的价格=降价前的价格(1-降价的百分率),则第一次降价后的价格是168(1-x),第二次后的价格是168(1-x)2,据此即可列方程求解.【详解】设每次降价的百分率为x,根据题意得:168(1-x)2=1.故选A.【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.5、B【解析】先根据二次根式的乘法法则化简,再估算出的大小即可判断.【详解】解:,,故的值应在2和3之间.故选:B.【点睛】本题主要考查了无理数的估算,正确估算出的范围是解答本题的关键.6、C【分析】把点(2,1)的横坐标加2,纵坐标不变即可得到对应点的坐标.【详解】解:∵将点(2,1)向右平移2个单位长度,∴得到的点的坐标是(2+2,1),即:(4,1),故选:C.【点睛】本题主要考查了坐标系中点的平移规律,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.7、C【分析】作BD⊥AC于D,如图,先利用等腰直角三角形的性质得到AC=1BD,再证得四边形OADB是矩形,利用AC⊥x轴得到C(1,1),然后根据反比例函数图象上点的坐标特征计算k的值.【详解】解:作BD⊥AC于D,如图,∵ABC为等腰直角三角形,∴BD是AC的中线,∴AC=1BD,∵CA⊥x轴于点A,∵AC⊥x轴,BD⊥AC,∠AOB=90°,∴四边形OADB是矩形,∴BD=OA=1,∴AC=1,∴C(1,1),把C(1,1)代入y=得k=1×1=1.故选:C.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了等腰直角三角形的性质.8、D【分析】根据比例的合比性质直接求解即可.【详解】解:由题意AP∶PB=2∶3,AB∶PB=(AP+PB)∶PB=(2+3)∶3=5∶3;故选择:D.【点睛】本题主要考查比例线段问题,关键是根据比例的合比性质解答.9、A【解析】试题分析:由题意可证△AOF≌△COE,EO=FO,AF=CF=CE=AE,四边形AECF是菱形,若∠DCF=30°,则∠FCE=60°,△EFC是等边三角形,∵CD=AB=,∴DF=tan30°×CD=×=1,∴CF=2DF=2×1=2,∴EF=CF=2,故选A.考点:1.矩形及菱形性质;2.解直角三角形.10、D【分析】首先根据俯视图排除正方体、三棱柱,然后跟主视图和左视图排除圆锥,即可得到结论.【详解】∵俯视图是圆,

∴排除A和C,

∵主视图与左视图均是长方形,

∴排除B,

故选:D.【点睛】本题主要考查了简单几何体的三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.11、D【解析】在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度;图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.【详解】将线段AB先向右平移5个单位,点B(2,1),连接OB,顺时针旋转90°,则B'对应坐标为(1,-2),故选D.【点睛】本题考查了图形的平移与旋转,熟练运用平移与旋转的性质是解题的关键.12、B【解析】试题解析:A.是一元一次方程,故A错误;

B.是一元二次方程,故B正确;

C.不是整式方程,故C错误;

D.不是一元二次方程,故D错误;

故选B.二、填空题(每题4分,共24分)13、y=3(x﹣1)2﹣2【分析】根据图象向下平移减,向右平移减,即可得答案.【详解】抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是y=3(x-1)2-2,故答案为y=3(x-1)2-2.【点睛】本题考查了二次函数图象与几何变换,解题的关键是用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.14、257【分析】根据获奖人数依次增加,获得二三等奖的人数之和与二等奖奖品的单价相同,以及二等奖奖品单价为5的倍数,可知二等奖的单价为10或15,分别讨论即可得出答案.【详解】设二等奖人数为m,三等奖人数为n,二等奖单价为a,三等奖单价为b,根据题意列表分析如下:一等奖二等奖三等奖去年获奖人数3mn奖品单价34ab今年获奖人数3+1=4m+2n+3奖品单价34+6=40a+3b+2∵今年购买奖品的总费用比去年增加了159元∴整理得∵,,为5的倍数∴的值为10或15当时,,代入得,解得不符合题意,舍去;当时,有3种情况:①,,代入得,解得,符合题意此时去年购买奖品一共花费元②,,代入得,解得,不符合题意,舍去③,,代入得,解得,不符合题意,舍去综上可得,去年购买奖品一共花费257元故答案为:257.【点睛】本题考查了方程与不等式的综合应用,难度较大,根据题意推出的取值,然后分类讨论是解题的关键.15、【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.【详解】解:设BP=x,则AP=4-x,根据题意可得,,整理为:,利用求根公式解方程得:,∴,(舍去).故答案为:.【点睛】本题考查的知识点是由实际问题抽化出来的一元二次方程问题,将问题转化为一元二次方程求解问题,熟记一元二次方程的求根公式是解此题的关键.16、1【分析】根据红球的概率结合概率公式列出关于n的方程,求出n的值即可【详解】解:∵摸到红球的概率为∴解得n=1.

故答案为:1.【点睛】本题考查概率的求法与运用,根据概率公式求解即可:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率17、【分析】根据圆的面积公式和扇形的面积公式分别求得各自的面积,再根据概率公式即可得出答案.【详解】∵圆的面积是:,扇形的面积是:,∴小球落在阴影部分的概率为:.故答案为:.【点睛】本题主要考查了几何概率问题,用到的知识点为:概率=相应面积与总面积之比.18、0【分析】将特殊角的三角函数值代入求解.【详解】.故答案为.【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.三、解答题(共78分)19、(1),图画见解析;(2)或.【分析】(1)利用交点式直接写出函数的表达式,再用五点法作出函数的图象;(2)先求得AB的长,再利用三角形面积法求得点P的纵坐标,即可求得答案.【详解】(1)由题意知:..∵顶点坐标为:-1012303430描点、连线作图如下:(2)设点P的纵坐标为,,∴.∴或,将代入,得:,此时方程无解.将代入,得:,解得:;或.【点睛】本题主要考查了待定系数法求函数的解析式以及利用三角形面积法求点的坐标的应用,求函数图象上的点的坐标的问题一般要转化为求线段的长的问题.20、(1)4;(1)或【分析】(1)首先解一次函数与反比例函数的解析式组成的方程组即可求得A和B的坐标;然后求得AB和x轴的交点,然后根据S△AOB=S△AOC+S△OBC即可求解;(1)一次函数值小于反比例函数值,即对相同的x的值,一次函数的图象在反比例函数的图象的下边,据此即可求得x的范围.【详解】解:(1)解方程组,即,解得:x=3或−1,则或,∴A(3,1),B(−1,−3);设一次函数与x轴的交点为C,如下图:在y=x−1中,令y=0,解得:x=1,则C的坐标是(1,0),则OC=1.∴S△AOB=S△AOC+S△OBC=;(1)根据图象所示:当或时,一次函数图象在反比例函数图象的下边,此时一次函数值小于反比例函数值,故答案为:或.【点睛】本题考查一次函数与反比例函数的有关知识,掌握用方程组求交点坐标,求三角形面积时关键找到特殊点,用分割法解决面积问题,属于中考常考题型.21、(1);(2)存在,理由见解析;D(-4,)或(2,);(3)最大值;最小值【分析】(1)将点A、B的坐标代入函数解析式计算即可得到;(2)点D应在x轴的上方或下方,在下方时通过计算得△ABD的面积是△ABC面积的倍,判断点D应在x轴的上方,设设D(m,n),根据面积关系求出m、n的值即可得到点D的坐标;(3)设E(x,y),由点E是以点C为圆心且1为半径的圆上的动点,用两点间的距离公式得到点E的坐标为E,再根据点F是AE中点表示出点F的坐标,再设设F(m,n),再利用m、n、与x的关系得到n=,通过计算整理得出,由此得出F点的轨迹是以为圆心,以为半径的圆,再计算最大值与最小值即可.【详解】解:(1)将点A(-3,0)、B(1,0)代入y=ax2+bx-2中,得,解得,∴(2)若D在x轴的下方,当D为抛物线顶点(-1,)时,,△ABD的面积是△ABC面积的倍,,所以D点一定在x轴上方.设D(m,n),△ABD的面积是△ABC面积的倍,n==m=-4或m=2D(-4,)或(2,)(3)设E(x,y),∵点E是以点C为圆心且1为半径的圆上的动点,∴,∴y=,∴E,∵F是AE的中点,∴F的坐标,设F(m,n),∴m=,n=,∴x=2m+3,∴n=,∴2n+2=,∴(2n+2)2=1-(2m+3)2,∴4(n+1)2+4()2=1,∴,∴F点的轨迹是以为圆心,以为半径的圆,∴最大值:,最小值:最大值;最小值【点睛】此题是二次函数的综合题,考察待定系数法解函数关系式,图像中利用三角形面积求点的坐标,注意应分x轴上下两种情况,(3)还考查了两点间的中点坐标的求法,两点间的距离的确定方法:两点间的距离的平方=横坐标差的平方+纵坐标差的平方.22、(1);(2)①(2,);②点E(2,).【分析】(1)抛物线的表达式为:y=a(x+1)(x﹣5)=a(x2﹣4x﹣5),故﹣5a=,解得:a=﹣,即可求解;(2)①点A关于函数对称轴的对称点为点B,连接CB交函数对称轴于点E,则点E为所求,即可求解;②t=AE+DE,t=AE+DE=AE+EH,当A、E、H共线时,t最小,即可求解.【详解】(1)抛物线的表达式为:y=a(x+1)(x﹣5)=a(x2﹣4x﹣5),故﹣5a=,解得:a=﹣,故抛物线的表达式为:;(2)①函数的对称轴为:x=2,点A关于函数对称轴的对称点为点B,连接CB交函数对称轴于点E,则点E为所求,由点B、C的坐标得,BC的表达式为:y=﹣x+,当x=2时,y=,故答案为:(2,);②t=AE+DE,过点D作直线DH,使∠EDH=30°,作HE⊥DH于点H,则HE=DE,t=AE+DE=AE+EH,当A、E、H共线时,t最小,则直线A(E)H的倾斜角为:30°,直线AH的表达式为:y=(x+1)当x=2时,y=,故点E(2,).【点睛】本题考查了二次函数的综合问题,掌握二次函数的性质以及解析式、对称的性质是解题的关键.23、(1),;(2)或.【分析】⑴将点A(1,m)B(2,1)代入y2得出k2,m;再将A,B坐标代入y1中,求出即可;⑵直接根据函数图像写出答案即可.【详解】解:点在双曲线上,双曲线的解析式为在双曲线上,,直线过两点,,解得,直线的解析式为.根据函数图象可知,不等式的解集为或.【点睛】此题主要考查了一次函数与反比例函数交点问题,已知一个交点坐标先求出反比例函数的解析式是解题的关键.24、(1)①详见解析;②1;(1)详见解析;(3)BD=.【分析】(1)①根据题意画出图形即可.②解直角三角形求出PA,再利用全等三角形的性质证明PQ=PA即可.(1)作PF⊥BQ于F,AH⊥PF于H.通过计算证明DF=FQ即可解决问题.(3)如图3中,作PF⊥BQ于F,AH⊥PF于H.设BD=x,则CD=x﹣t,,利用相似三角形的性质构建方程求解即可解决问题.【详解】(1)解:①补全图形如图所示:②∵△ABD是等边三角形,AC⊥BD,AC=1∴∠ADC=60°,∠ACD=90°∴∵∠ADP=∠ADB=60°,∠PAD=90°∴PA=AD•tan60°=1∵∠ADP=∠PDQ=60°,DP=DP.DA=DB=DQ∴△PDA≌△PDQ(SAS)∴PQ=PA=1.(1)作PF⊥BQ于F,AH⊥PF于H,如图:∵PA⊥AD,∴∠PAD=90°由题意可知∠ADP=45°∴∠APD=90°﹣45°=45°=∠ADP∴PA=PD∵∠ACB=90°∴∠ACD=90°∵AH⊥PF,PF⊥BQ∴∠AHF=∠HFC=∠ACF=90°∴四边形ACFH是矩形∴∠CAH=90°,AH=CF∵∠ACH=∠DAP=90°∴∠CAD=∠PAH又∵∠ACD=∠AHP=90°∴△ACD≌△AHP(AAS)∴AH=AC=1∴CF=AH=1∵,BC=1,B,Q关于点D对称∴,∴∴F为DQ中点∴PF垂直平分DQ∴PQ=PD.(3)如图3中,作PF⊥BQ于F,A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论