河北省秦皇岛市青龙满族自治县2022年九年级数学第一学期期末检测试题含解析_第1页
河北省秦皇岛市青龙满族自治县2022年九年级数学第一学期期末检测试题含解析_第2页
河北省秦皇岛市青龙满族自治县2022年九年级数学第一学期期末检测试题含解析_第3页
河北省秦皇岛市青龙满族自治县2022年九年级数学第一学期期末检测试题含解析_第4页
河北省秦皇岛市青龙满族自治县2022年九年级数学第一学期期末检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图所示的两个四边形相似,则α的度数是()A.60° B.75° C.87° D.120°2.下列式子中表示是关于的反比例函数的是()A. B. C. D.3.如图,在△ABC中,∠C=90°,∠BAC=70°,将△ABC绕点A顺时针旋转70°,B,C旋转后的对应点分别是B′和C′,连接BB′,则∠ABB′的度数是()A.35° B.40° C.45° D.55°4.如图,已知为的直径,点,在上,若,则()A. B. C. D.5.已知二次函数,当时,该函数取最大值8.设该函数图象与轴的一个交点的横坐标为,若,则a的取值范围是()A. B. C. D.6.甲、乙两位同学在一次用频率估计概率的试验中,统计了某一结果出现的频率,给出的统计图如图所示,则符合这一结果的试验可能是()A.掷一枚硬币,出现正面朝上的概率B.掷一枚硬币,出现反面朝上的概率C.掷一枚骰子,出现点的概率D.从只有颜色不同的两个红球和一个黄球中,随机取出一个球是黄球的概率7.共享单车已经成为城市公共交通的重要组成部分,某共享单车公司经过调查获得关于共享单车租用行驶时间的数据,并由此制定了新的收费标准:每次租用单车行驶a小时及以内,免费骑行;超过a小时后,每半小时收费1元,这样可保证不少于50%的骑行是免费的.制定这一标准中的a的值时,参考的统计量是此次调查所得数据的()A.平均数 B.中位数 C.众数 D.方差8.计算的结果是A.﹣3 B.3 C.﹣9 D.99.下列各式由左到右的变形中,属于分解因式的是()A. B.C. D.10.如图,在直线上有相距的两点和(点在点的右侧),以为圆心作半径为的圆,过点作直线.将以的速度向右移动(点始终在直线上),则与直线在______秒时相切.A.3 B.3.5 C.3或4 D.3或3.511.若△ABC∽△ADE,若AB=6,AC=4,AD=3,则AE的长是()A.1 B.2 C.1.5 D.312.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时得到的两个球的颜色中有“一红一黄”的概率是()A. B. C. D.二、填空题(每题4分,共24分)13.在△ABC中,AB=10,AC=8,B为锐角且,则BC=_____.14.如图,是等腰直角三角形,,以BC为边向外作等边三角形BCD,,连接AD交CE于点F,交BC于点G,过点C作交AB于点下列结论:;∽;;则正确的结论是______填序号15.已知四条线段a、2、6、a+1成比例,则a的值为_____.16.已知:a,b在数轴上的位置如图所示,化简代数式:=_____.17.如图,,,则的度数是__________.18.如图,△ABC中,AB>AC,D,E两点分别在边AC,AB上,且DE与BC不平行.请填上一个你认为合适的条件:_____,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)三、解答题(共78分)19.(8分)如图,在中,,点为边的中点,请按下列要求作图,并解决问题:(1)作点关于的对称点;(2)在(1)的条件下,将绕点顺时针旋转,①面出旋转后的(其中、、三点旋转后的对应点分别是点、、);②若,则________.(用含的式子表示)20.(8分)某校九年级(2)班、、、四位同学参加了校篮球队选拔.(1)若从这四人中随杋选取一人,恰好选中参加校篮球队的概率是______;(2)若从这四人中随机选取两人,请用列表或画树状图的方法求恰好选中、两位同学参加校篮球队的概率.21.(8分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(-3,m+8),B(n,-6)两点.(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积.22.(10分)如图,已知正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G(1)求证:△BDG∽△DEG;(2)若EG•BG=4,求BE的长.23.(10分)如图,是的直径,为上一点,于点,交于点,与交于点为延长线上一点,且.(1)求证:是的切线;(2)求证:;(3)若,求的长.24.(10分)(1)计算:(2)解方程:25.(12分)如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.(1)求证:∠E=∠C;(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数.26.今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签的方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是事件,“小悦被抽中”是事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.

参考答案一、选择题(每题4分,共48分)1、C【解析】根据相似多边形性质:对应角相等.【详解】由已知可得:α的度数是:360〫-60〫-75〫-138〫=87〫故选C【点睛】本题考核知识点:相似多边形.解题关键点:理解相似多边形性质.2、C【解析】根据反比例函数的定义进行判断.【详解】解:A.是正比例函数,此选项错误;B.是正比例函数,此选项错误;C.是反比例函数,此选项正确;D.是一次函数,此选项错误.故选:C.【点睛】本题考查了反比例函数的定义,重点是将一般式(k≠0)转化为(k≠0)的形式.3、D【解析】在△ABB'中根据等边对等角,以及三角形内角和定理,即可求得∠ABB'的度数.【详解】由旋转可得,AB=AB',∠BAB'=70°,∴∠ABB'=∠AB'B=(180°-∠BAB′)=55°.故选:D.【点睛】本题考查了旋转的性质,在旋转过程中根据旋转的性质确定相等的角和相等的线段是关键.4、C【分析】连接AD,根据同弧所对的圆周角相等,求∠BAD的度数,再根据直径所对的圆周角是90°,利用内角和求解.【详解】解:连接AD,则∠BAD=∠BCD=28°,∵AB是直径,∴∠ADB=90°,∴∠ABD=90°-∠BAD=90°-28°=62°.故选:C.【点睛】本题考查圆周角定理,运用圆周角定理是解决圆中角问题的重要途径,直径所对的圆周角是90°是圆中构造90°角的重要手段.5、B【分析】利用函数与x轴的交点,求出横坐标,根据开口方向、以及列出不等式组,解不等式组即可.【详解】∵二次函数,当时,该函数取最大值8∴,当y=0时,∴∵∴∴∴故选:B【点睛】本题考查了二次函数的性质,掌握二次函数的性质是解题的关键.6、D【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】解:A.掷一枚硬币,出现正面朝上的概率为,故此选项不符合题意;B.掷一枚硬币,出现反面朝上的概率为,故此选项不符合题意;C.掷一枚骰子,出现点的概率为,故此选项不符合题意;D.从只有颜色不同的两个红球和一个黄球中,随机取出一个球是黄球的概率为,故此选项符合题意;故选:D.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.7、B【分析】根据需要保证不少于50%的骑行是免费的,可得此次调查的参考统计量是此次调查所得数据的中位数.【详解】因为需要保证不少于50%的骑行是免费的,所以制定这一标准中的a的值时,参考的统计量是此次调查所得数据的中位数,故选B.【点睛】本题考查了中位数的知识,中位数是以它在所有标志值中所处的位置确定的全体单位标志值的代表值,不受分布数列的极大或极小值影响,从而在一定程度上提高了中位数对分布数列的代表性.8、B【分析】利用二次根式的性质进行化简即可.【详解】=|﹣3|=3.故选B.9、C【解析】根据题中“属于分解因式的是”可知,本题考查多项式的因式分解的判断,根据因式分解的概念,运用因式分解是把多项式分解成若干个整式相乘的形式,进行分析判断.【详解】A.属于整式乘法的变形.B.不符合因式分解概念中若干个整式相乘的形式.C.运用提取公因式法,把多项式分解成了5x与(2x-1)两个整式相乘的形式.D.不符合因式分解概念中若干个整式相乘的形式.故应选C【点睛】本题解题关键:理解因式分解的概念是把多项式分解成若干个整式相乘的形式,注意的是相乘的形式.10、C【分析】根据与直线AB的相对位置分类讨论:当在直线AB左侧并与直线AB相切时,根据题意,先计算运动的路程,从而求出运动时间;当在直线AB右侧并与直线AB相切时,原理同上.【详解】解:当在直线AB左侧并与直线AB相切时,如图所示∵的半径为1cm,AO=7cm∴运动的路程=AO-=6cm∵以的速度向右移动∴此时的运动时间为:÷2=3s;当在直线AB右侧并与直线AB相切时,如图所示∵的半径为1cm,AO=7cm∴运动的路程=AO+=8cm∵以的速度向右移动∴此时的运动时间为:÷2=4s;综上所述:与直线在3或4秒时相切故选:C.【点睛】此题考查的是直线与圆的位置关系:相切和动圆问题,掌握相切的定义和行程问题公式:时间=路程÷速度是解决此题的关键.11、B【分析】根据相似三角形的性质,由,即可得到AE的长.【详解】解:∵△ABC∽△ADE,∴,∵AB=6,AC=4,AD=3,∴,∴;故选择:B.【点睛】本题考查了相似三角形的性质,解题的关键是熟练掌握相似三角形的性质.12、C【解析】解:画树状图如下:一共有6种情况,“一红一黄”的情况有2种,∴P(一红一黄)==.故选C.二、填空题(每题4分,共24分)13、8+2或8﹣2【分析】分两种情况进行解答,即①∠ACB为锐角,②∠ACB为钝角,分别画出图形,利用三角函数解直角三角形即可.【详解】过点A作AD⊥BC,垂足为D,①当∠ACB为锐角时,如图1,在Rt△ABD中,BD=AB•cosB=10×=8,AD==6,在Rt△ACD中,CD==2,∴BC=BD+CD=8+2,②当∠ACB为钝角时,如图2,在Rt△ABD中,BD=AB•cosB=10×=8,AD==6,在Rt△ACD中,CD==2,∴BC=BD﹣CD=8﹣2,故答案为:8+2或8﹣2.【点睛】考查直角三角形的边角关系,理解锐角三角函数的意义是正确解答的关键,分类讨论在此类问题中经常用到.14、②③④【分析】根据题意证明∠CAE=∠ACE=45°,∠BCD=60°,AC=CD=BD=BC即可证明②正确,①错误,在△AEF中利用特殊三角函数即可证明③正确,在Rt△AOC中,利用即可证明④正确.【详解】解:由题可知,∠CAE=∠ACE=45°,∠BCD=60°,AC=CD=BD=BC,∴∠ACD=150°,∴∠CDA=∠CAD=15°,∴∠FCG=∠BDG=45°,∴,②正确,①错误,∵易证∠FAE=30°,设EF=x,则AE=CE=,∴,③正确,设CH与AD交点为O,易证∠FCO=30°,设OF=y,则CF=2y,由③可知,EF=()y,∴AF=()y,在Rt△AOC中,.故②③④正确.【点睛】本题考查了相似三角形的判定,特殊的直角三角形,三角函数的简单应用,难度较大,熟知特殊三角函数值是解题关键.15、3【分析】由四条线段a、2、6、a+1成比例,根据成比例线段的定义,即可得=,即可求得a的值.【详解】解:∵四条线段a、2、6、a+1成比例,∴=,∵a(a+1)=12,解得:a1=3,a2=-4(不符合题意,舍去).故答案为3.【点睛】本题考查了线段成比例的定义:若四条线段a,b,c,d成比例,则有a:b=c:d.16、1.【分析】根据二次根式的性质=|a|开平方,再结合数轴确定a﹣1,a+b,1﹣b的正负性,然后去绝对值,最后合并同类项即可.【详解】原式=|a﹣1|﹣|a+b|+|1﹣b|=1﹣a﹣(﹣a﹣b)+(1﹣b)=1﹣a+a+b+1﹣b=1,故答案为:1.【点睛】此题主要考查了二次根式的化简和性质,正确把握绝对值的性质是解答此题的关键.17、【分析】根据三角形外角定理求解即可.【详解】∵,且∴故填:.【点睛】本题主要考查三角形外角定理,熟练掌握定理是关键.18、∠B=∠1或【解析】此题答案不唯一,注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.【详解】此题答案不唯一,如∠B=∠1或.∵∠B=∠1,∠A=∠A,∴△ADE∽△ABC;∵,∠A=∠A,∴△ADE∽△ABC;故答案为∠B=∠1或【点睛】此题考查了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似,要注意正确找出两三角形的对应边、对应角,根据判定定理解题.三、解答题(共78分)19、(1)见解析;(2)①见解析,②90°−α【分析】(1)利用网格特点和轴对称的性质画出O点;(2)①利用网格特点和旋转的性质分别画出A、B、C三点对应点点E、F、G即可;②先确定∠OCB=∠DCB=α,再利用OB=OC和三角形内角和得到∠BOC=180°−2α,根据旋转的性质得到∠COG=90°,则∠BOG=270°−2α,于是可计算出∠OGB=α−45°,然后计算∠OGC−∠OGB即可.【详解】(1)如图,点O为所作;(2)①如图,△EFG为所作;②∵点O与点D关于BC对称,∴∠OCB=∠DCB=α,∵OB=OC,∴∠OBC=∠OCB=α,∴∠BOC=180°−2α,∵∠COG=90°,∴∠BOG=180°−2α+90°=270°−2α,∵OB=OG,∴∠OGB=[180°−(270°−2α)]=α−45°,∴∠BGC=∠OGC−∠OGB=45°−(α−45°)=90°−α.故答案为90°−α.【点睛】本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.20、(1);(2)(两位同学参加篮球队)【分析】(1)根据概率公式(n次试验中,事件A出现m次)计算即可(2)用列表法求得全部情况的总数与符合条件的情况数目,二者的比值就是其发生的概率.【详解】解:(1)恰好选中B参加校篮球队的概率是.(2)列表格如下:∴(两位同学参加篮球队)【点睛】本题考查的是用列表法或树状图法求事件的概率问题,通过题目找出全部情况的总数与符合条件的情况数目与熟记概率公式是解题的关键.21、(1)y=-,y=-2x-4(2)1【分析】(1)将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比例函数解析式,再将点B坐标代入反比例函数求出n的值,从而得到点B的坐标,然后利用待定系数法求一次函数解析式求解;(2)设AB与x轴相交于点C,根据一次函数解析式求出点C的坐标,从而得到点OC的长度,再根据S△AOB=S△AOC+S△BOC列式计算即可得解.【详解】(1)将A(﹣3,m+1)代入反比例函数y=得,=m+1,解得m=﹣6,m+1=﹣6+1=2,所以,点A的坐标为(﹣3,2),反比例函数解析式为y=﹣,将点B(n,﹣6)代入y=﹣得,﹣=﹣6,解得n=1,所以,点B的坐标为(1,﹣6),将点A(﹣3,2),B(1,﹣6)代入y=kx+b得,,解得,所以,一次函数解析式为y=﹣2x﹣4;(2)设AB与x轴相交于点C,令﹣2x﹣4=0解得x=﹣2,所以,点C的坐标为(﹣2,0),所以,OC=2,S△AOB=S△AOC+S△BOC,=×2×2+×2×6,=2+6,=1.考点:反比例函数与一次函数的交点问题.22、(1)证明见解析(2)1【解析】(1)证明:∵将△BCE绕点C顺时针旋转到△DCF的位置,∴△BCE≌△DCF.∴∠FDC=∠EBC.∵BE平分∠DBC,∴∠DBE=∠EBC.∴∠FDC=∠EBE.又∵∠DGE=∠DGE,∴△BDG∽△DEG.(2)解:∵△BCE≌△DCF,∴∠F=∠BEC,∠EBC=∠FDC.∵四边形ABCD是正方形,∴∠DCB=90°,∠DBC=∠BDC=15°.∵BE平分∠DBC,∴∠DBE=∠EBC=22.5°=∠FDC.∴∠BDF=15°+22.5°=67.5°,∠F=90°﹣22.5°=67.5°=∠BDF.∴BD=BF,∵△BCE≌△DCF,∴∠F=∠BEC=67.5°=∠DEG.∴∠DGB=180°﹣22.5°﹣67.5°=90°,即BG⊥DF.∵BD=BF,∴DF=2DG.∵△BDG∽△DEG,BG×EG=1,∴.∴BG×EG=DG×DG=1.∴DG=2∴BE=DF=2DG=1.(1)根据旋转性质求出∠EDG=∠EBC=∠DBE,根据相似三角形的判定推出即可.(2)先求出BD=BF,BG⊥DF,求出BE=DF=2DG,根据相似求出DG的长,即可求出答案23、(1)证明见解析;(2)证明见解析;(3)【分析】(1)欲证明BD是⊙O的切线,只要证明BD⊥AB;

(2)连接AC,证明△FCM∽△FAC即可解决问题;

(3)连接BF,想办法求出BF,FM即可解决问题.【详解】(1)∵,

∴∠AFC=∠ABC,

又∵∠AFC=∠ODB,

∴∠ABC=∠ODB,

∵OE⊥BC,

∴∠BED=90°,

∴∠ODB+∠EBD=90°,

∴∠ABC+∠EBD=90°,

∴OB⊥BD,

∴BD是⊙O的切线;

(2)连接AC,

∵OF⊥BC,

∴,,

∴∠BCF=∠FAC,

又∵∠CFM=∠AFC,

∴△FCM∽△FAC,

∴;

(3)连接BF,

∵AB是⊙O的直径,且AB=10,

∴∠AFB=90°,∴,

∴,

∴,

∵,

∴,

∵,

∴,

∴,∴.【点睛】本题属于圆综合题,考查了圆周角定理,切线的判定,相似三角形的判定和性质,勾股定理,解直角三角形等知识,解题的关键是学会添加常用辅助线.24、(1);(2)x1=3,x2=﹣2.【分析】(1)根据二次根式的运算法则,合并同类二次根式计算即可得答案;(2)把原方程整理为一元二次方程的一般形式,再利用十字相乘法解方程即可.【详解】(1)原式=.(2)x2-x-6=0(x﹣3)(x+2)=0解得:x1=3,x2=﹣2.【点睛】本题考查二次根式的运算及解一元二次方程,一元二次方程的常用解法有:直接开平方法、公式法、配方法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.25、(1)证明见详解;(2);(3)30°或45°.【分析】(1)由题意:∠E=90°-∠ADE,证明∠ADE=90°-∠C即可解决问题.(2)延长AD交BC于点F.证明AE∥BC,可得∠AFB=∠EAD=90°,,由BD:DE=2:3,可得cos∠ABC=;(3)因为△ABC与△ADE相似,∠DAE=90°,所以∠ABC中必有一个内角为90°因为∠ABC是锐角,推出∠AB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论