版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省永春县第一中学2025届九年级数学第一学期期末经典模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,中,,于,平分,且于,与相交于点,于,交于,下列结论:①;②;③;④.其中正确的是()A.①② B.①③ C.①②③ D.①②③④2.把抛物线y=-x2向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线解析式为()A.y=-(x+1)2+1 B.y=-(x+1)2-1 C.y=-(x-1)2+1 D.y=-(x-1)2-13.在Rt△ABC中,∠C=90°,∠B=35°,AB=3,则BC的长为()A.3sin35° B. C.3cos35° D.3tan35°4.如图,在△ABC中,DE∥BC交AB于D,交AC于E,错误的结论是(
).A. B. C. D.5.如图,与是以坐标原点为位似中心的位似图形,若点是的中点,的面积是6,则的面积为()A.9 B.12 C.18 D.246.将抛物线向右平移个单位后,得到的抛物线的解析式是()A. B. C. D.7.将抛物线向右平移一个单位,向上平移2个单位得到抛物线A. B. C. D.8.下列函数关系式中,是的反比例函数的是()A. B. C. D.9.二次函数的最小值是()A.2 B.2 C.1 D.110.若,则正比例函数与反比例函数在同一坐标系中的大致图象可能是()A. B. C. D.二、填空题(每小题3分,共24分)11.若m﹣=3,则m2+=_____.12.若关于x的一元二次方程的一个根是0,则另一个根是________.13.如图,已知正六边形内接于,若正六边形的边长为2,则图中涂色部分的面积为______.14.如图,已知电流在一定时间段内正常通过电子元件“”的概率是12,在一定时间段内,A,B之间电流能够正常通过的概率为.15.如图,在与中,,要使与相似,还需添加一个条件,这个条件可以是____________(只需填一个条件)16.如图,三个顶点的坐标分别为,点为的中点.以点为位似中心,把或缩小为原来的,得到,点为的中点,则的长为________.17.如图,已知点A、B分别在反比例函数,的图象上,且,则的值为______.18.如图,AE、BE是△ABC的两个内角的平分线,过点A作AD⊥AE.交BE的延长线于点D.若AD=AB,BE:ED=1:2,则cos∠ABC=_____.三、解答题(共66分)19.(10分)如图,AB是⊙O的直径,OD垂直弦AC于点E,且交⊙O于点D,F是BA延长线上一点,若∠CDB=∠BFD.(1)求证:FD∥AC;(2)试判断FD与⊙O的位置关系,并简要说明理由;(3)若AB=10,AC=8,求DF的长.20.(6分)如图,菱形的顶点在菱形的边上,与相交于点,,若,,求菱形的边长.21.(6分)如图,二次函数的图象经过点与.求a,b的值;点C是该二次函数图象上A,B两点之间的一动点,横坐标为,写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.22.(8分)已知如下图1和图2中的每个小正方形的边长都是1个单位.(1)将图1中的格点,按照的规律变换得到,请你在图1中画出.(2)在图2中画出一个与格点相似但相似比不等于1的格点.(说明:顶点都在网格线交点处的三角形叫做格点三角形.)23.(8分)空地上有一段长为am的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为110m.(1)已知a=30,矩形菜园的一边靠墙,另三边一共用了110m木栏,且围成的矩形菜园而积为1000m1.如图1,求所利用旧墙AD的长;(1)已知0<a<60,且空地足够大,如图1.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.24.(8分)一个不透明的口袋中装有4个分别标有数1,2,3,4的小球,它们的形状、大小完全相同,小红先从口袋里随机摸出一个小球记下数为x,小颖在剩下的3个球中随机摸出一个小球记下数为y,这样确定了点P的坐标(x,y).(1)小红摸出标有数3的小球的概率是.(2)请你用列表法或画树状图法表示出由x,y确定的点P(x,y)所有可能的结果.(3)求点P(x,y)在函数y=﹣x+5图象上的概率.25.(10分)解方程:2x2﹣4x+1=1.26.(10分)如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.(1)求证:∠E=∠C;(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据∠ABC=45°,CD⊥AB可得出BD=CD,利用AAS判定Rt△DFB≌Rt△DAC,从而得出DF=AD,BF=AC.则CD=CF+AD,即AD+CF=BD;再利用AAS判定Rt△BEA≌Rt△BEC,得出CE=AE=AC,又因为BF=AC所以CE=AC=BF;连接CG.因为△BCD是等腰直角三角形,即BD=CD.又因为DH⊥BC,那么DH垂直平分BC.即BG=CG;在Rt△CEG中,CG是斜边,CE是直角边,所以CE<CG.即AE<BG.【详解】∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.故①正确;在Rt△DFB和Rt△DAC中,∵∠DBF=90°-∠BFD,∠DCA=90°-∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC;DF=AD.∵CD=CF+DF,∴AD+CF=BD;故②正确;在Rt△BEA和Rt△BEC中∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=AE=AC.又由(1),知BF=AC,∴CE=AC=BF;故③正确;连接CG.∵△BCD是等腰直角三角形,∴BD=CD又DH⊥BC,∴DH垂直平分BC.∴BG=CG在Rt△CEG中,∵CG是斜边,CE是直角边,∴CE<CG.∵CE=AE,∴AE<BG.故④错误.故选C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.在复杂的图形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点.2、B【解析】试题分析:根据抛物线的平移规律“左加右减,上加下减”,可直接求得平移后的抛物线的解析式为:.3、C【分析】根据余弦定义求解即可.【详解】解:如图,∵∠C=90°,∠B=35°,AB=3,cos35°=,∴BC=3cos35°.故选:C.【点睛】本题考查了锐角三角函数,属于基础题型,熟练掌握余弦的定义是解此题的关键.4、D【分析】根据平行线分线段成比例定理及相似三角形的判定与性质进行分析可得出结论.【详解】由DE∥BC,可得△ADE∽△ABC,并可得:,,,故A,B,C正确;D错误;故选D.【点睛】考点:1.平行线分线段成比例;2.相似三角形的判定与性质.5、D【分析】根据位似图形的性质,再结合点A与点的坐标关系可得出两个三角形的相似比,再根据面积比等于相似比的平方即可得出答案.【详解】解:∵△ABC与△是以坐标原点O为位似中心的位似图形,且A为的中心,∴△ABC与△的相似比为:1:2;∵位似图形的面积比等于相似比的平方,∴△的面积等于4倍的△ABC的面积,即.故答案为:D.【点睛】本题考查的知识点是位似图形的性质,位似是特殊的相似,熟记位似图形的面积比等于相似比的平方是解题的关键.6、B【分析】原抛物线的顶点坐标(0,0),再把点(0,0)向右平移3个单位长度得点(0,3),然后根据顶点式写出平移后的抛物线解析式.【详解】解:将抛物线向右平移个单位后,得到的抛物线的解析式.故选:B【点睛】本题考查的是抛物线的平移.抛物线的平移可根据平移规律来写,也可以移动顶点坐标,根据平移后的顶点坐标代入顶点式,即可求解.7、B【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线向右平移一个单位所得直线解析式为:;再向上平移2个单位为:,即.故选B.【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.8、C【分析】根据反比例函数的定义即可得出答案.【详解】A为正比例函数,B为一次函数,C为反比例函数,D为二次函数,故答案选择C.【点睛】本题考查的是反比例函数的定义:形如的式子,其中k≠0.9、B【解析】试题分析:对于二次函数的顶点式y=a+k而言,函数的最小值为k.考点:二次函数的性质.10、B【分析】根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【详解】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B符合.故选:B.【点睛】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.二、填空题(每小题3分,共24分)11、1【分析】根据完全平方公式,把已知式子变形,然后整体代入求值计算即可得出答案.【详解】解:∵=m2﹣2+=9,∴m2+=1,故答案为1.【点睛】此题主要考查完全平方公式的应用,解题的关键是熟知完全平方公式的变形.12、1【解析】设x1,x2是关于x的一元二次方程x2−x+k=0的两个根,∵关于x的一元二次方程x2−x+k=0的一个根是0,∴由韦达定理,得x1+x2=1,即x2=1,即方程的另一个根是1.故答案为1.13、【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正六边形内接于,∴∠BOA=∠AOC=60°,OA=OB=OC=4,∴∠BOC=120°,OD⊥BC,BD=CD∴∠OCB=∠OBC=30°,∴OD=,∵∠CDA=∠BDO,∴△CDA≌△BDO,∴S△CDA=S△BDO,∴图中涂色部分的面积等于扇形AOB的面积为:.故答案为:.【点睛】本题考查圆的内接正多边形的性质,根据圆的性质结合正六边形的性质将涂色部分转化成扇形面积是解答此题的关键.14、34【解析】根据题意,电流在一定时间段内正常通过电子元件的概率是12即某一个电子元件不正常工作的概率为12则两个元件同时不正常工作的概率为14故在一定时间段内AB之间电流能够正常通过的概率为1-14=3故答案为:3415、∠B=∠E【分析】根据两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似可得添加条件:∠B=∠E.【详解】添加条件:∠B=∠E;
∵,∠B=∠E,
∴△ABC∽△AED,
故答案为:∠B=∠E(答案不唯一).【点睛】此题考查相似三角形的判定,解题关键是掌握相似三角形的判定定理.16、或【分析】分两种情形画出图形,即可解决问题.【详解】解:如图,在Rt△AOB中,OB==10,
①当△A'OB'在第四象限时,OM=5,OM'=,∴MM'=.
②当△A''OB''在第二象限时,OM=5,OM"=,∴MM"=,
故答案为或.【点睛】本题考查位似变换,坐标与图形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.17、【分析】作轴于C,轴于D,如图,利用反比例函数图象上点的坐标特征和三角形面积公式得到,,再证明∽,然后利用相似三角形的性质得到的值,即可得出.【详解】解:作轴于C,轴于D,如图,点A、B分别在反比例函数,的图象上,,,,,,∽,,.故答案为.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数为常数,的图象是双曲线,图象上的点的横纵坐标的积是定值k,即.18、【分析】取DE的中点F,连接AF,根据直角三角形斜边中点的性质得出AF=EF,然后证得△BAF≌△DAE,得出AE=AF,从而证得△AEF是等边三角形,进一步证得∠ABC=60°,即可求得结论.【详解】取DE的中点F,连接AF,∴EF=DF,∵BE:ED=1:2,∴BE=EF=DF,∴BF=DE,∵AB=AD,∴∠ABD=∠D,∵AD⊥AE,EF=DF,∴AF=EF,在△BAF和△DAE中∴△BAF≌△DAE(SAS),∴AE=AF,∴△AEF是等边三角形,∴∠AED=60°,∴∠D=30°,∵∠ABC=2∠ABD,∠ABD=∠D,∴∠ABC=60°,∴cos∠ABC=cos60°=,故答案为:.【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.三、解答题(共66分)19、(1)证明见解析;(2)FD是⊙O的切线,理由见解析;(3)DF.【分析】(1)因为∠CDB=∠CAB,∠CDB=∠BFD,所以∠CAB=∠BFD,即可得出FD∥AC;(2)利用圆周角定理以及平行线的判定得出∠FDO=90°,进而得出答案;(3)利用垂径定理得出AE的长,再利用相似三角形的判定与性质得出FD的长.【详解】解:(1)∵∠CDB=∠CAB,∠CDB=∠BFD,∴∠CAB=∠BFD,∴FD∥AC,(2)∵∠AEO=90°,FD∥AC,∴∠FDO=90°,∴FD是⊙O的一条切线(3)∵AB=10,AC=8,DO⊥AC,∴AE=EC=4,AO=5,∴EO=3,∵AE∥FD,∴△AEO∽△FDO,∴,∴,解得:DF.【点睛】本题主要考查了相似三角形的判定与性质、垂径定理、圆周角定理以及平行线的判定,掌握相似三角形的判定与性质、垂径定理、圆周角定理以及平行线的判定是解题的关键.20、9【分析】连接,首先证明是等边三角形,再证明,推出,由此构建方程即可解决问题.【详解】解:连接.在菱形和菱形中,,,是等边三角形,设,则,,,,,,,,,,,或1(舍弃),,【点睛】本题考查相似多边形的性质,等边三角形的性质,菱形的性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.21、(1)(2)最大值为1.
【分析】(1)将与代入,用待定系数法可求得;(2)过A作x轴的垂直,垂足为,连接CD、CB,过C作,轴,垂足分别为E,F,则,关于x的函数表达式为,再求二次函数的最值即可.【详解】解:将与代入,得,解得:;如图,过A作x轴的垂直,垂足为,连接CD、CB,过C作,轴,垂足分别为E,F,;;,则,关于x的函数表达式为,,当时,四边形OACB的面积S有最大值,最大值为1.【点睛】本题考核知识点:二次函数与几何.解题关键点:数形结合列出面积表达式,求二次函数的最值.22、(2)详见解析;(2)详见解析【分析】(2)按题中要求,把图形上的每个关键点图2中的格点△ABC,先向右平移3个单位,再向上平移2个单位,得到△A2B2C2单位后,依次连接各个关键点,即可得出要画的图形;(2)根据平移作图的规律作图即可做个位似图形即可,相似比可以是2:2.【详解】(2)如图2.(2)如图2.(答案不唯一)【点睛】本题考查了作图-平移变换、作图-位似图形,根据要求作图是解题的关键.23、(1)旧墙AD的长为10米;(1)当0<a<40时,围成长和宽均为米的矩形菜园面积最大,最大面积为平方米;当40≤a<60时,围成长为a米,宽为米的矩形菜园面积最大,最大面积为(60﹣)平方米.【分析】(1)按题意设出AD=x米,用x表示AB,再根据面积列出方程解答;(1)根据旧墙长度a和AD长度表示矩形菜园长和宽,注意分类讨论S与菜园边长之间的数量关系.【详解】解:(1)设AD=x米,则AB=,依题意得,=1000,解得x1=100,x1=10,∵a=30,且x≤a,∴x=100舍去,∴利用旧墙AD的长为10米,故答案为10米;(1)设AD=x米,矩形ABCD的面积为S平方米,①如果按图1方案围成矩形菜园,依题意得,S=,∵0<a<60,∴x<a<60时,S随x的增大而增大,当x=a时,S最大为;②如按图1方案围成矩形菜园,依题意得,S=,当a<时,即0<a<40时,则x=时,S最大为,当,即40≤a<60时,S随x的增大而减小,∴x=a时,S最大=,综合①②,当0<a<40时,,此时,按图1方案围成矩形菜园面积最大,最大面积为平方米,当40≤a<60时,两种方案围成的矩形菜园面积最大值相等.∴当0<a<40时,围成长和宽均为米的矩形菜园面积最大,最大面积为平方米;当40≤a<60时,围成长为a米,宽为米的矩形菜园面积最大,最大面积为平方米.【点睛】本题以实际应用为背景,考查了一元二次方程与二次函数最值的讨论,解得时注意分类讨论变量大小关系.24、(1);(2)共12种情况;(3)【分析】(1)根据概率公式求解;(2)利用树状图展示所有12种等可能的结果数;(3)利用一次函数图象上点的坐标特征得到在函数y=-x+5的图象上的结果数,然后根据概率公式求解.【详解】解:(1)小红摸出标有数3的小球的概率是;(2)列表或树状图略:由列表或画树状图可知,P点的坐标可能是(1,2)(1,3)(1,4)(2,1)(2,3),(2,4)(3,1)(3,2)(3,4)(4,1)(4,2)(4,3)共12种情况,(3)共有12种可能的结果,其中在函数y=−x+5的图象上的有4种,即(1,4)(2,3)(3,2)(4,1)所以点P(x,y)在函数y=−x+5图象上的概率==.【点睛】本题考查的是概率,熟练掌握列表或画树状图是解题的关键.25、x1=1+,x2=1﹣【分析】先把方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年连带保证合同范本
- 水泥运输合同书范本(2025年)
- 新风工程承包合同范本(2025年)
- 材料销售合同范本2025年
- 2025代驾合同范本
- 2025租钢板合同范本
- 月饼采购合同范文2025年
- 个人劳务清包工合同范本2025年
- 蜂蜜供货合同范本(2025年)
- 2025年度数字经济平台增资扩股入股合同范本下载3篇
- MOOC 大数据与法律检索-湖南师范大学 中国大学慕课答案
- (2024年)长歌行汉乐府古诗PPT语文课件
- 计算机组成智慧树知到期末考试答案2024年
- 冶金装备制造行业产业链协同与生态构建
- 仓库班长年终总结及工作计划
- 部编人教版二年级劳动教育上册期末试卷(带答案)
- 篮球比赛记录表
- 芒果干行业标准
- 网络安全服务项目服务质量保障措施(实施方案)
- 常用家庭园养植物课件
- 肛门手术的镇痛研课件
评论
0/150
提交评论