版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省青岛市沧口2中学2025届九上数学期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.某企业2018年初获利润300万元,到2020年初计划利润达到507万元.设这两年的年利润平均增长率为x.应列方程是()A.300(1+x)=507 B.300(1+x)2=507C.300(1+x)+300(1+x)2=507 D.300+300(1+x)+300(1+x)2=5072.如图,□ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB于点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列结论:①EO⊥AC;②S△AOD=4S△OCF;③AC:BD=:7;④FB2=OF•DF.其中正确的是()A.①②④ B.①③④ C.②③④ D.①③3.已知一个扇形的弧长为3π,所含的圆心角为120°,则半径为()A.9 B.3 C. D.4.如图,的正切值为()A. B. C. D.5.将二次函数y=2x2﹣4x+5的右边进行配方,正确的结果是()A.y=2(x﹣1)2﹣3 B.y=2(x﹣2)2﹣3C.y=2(x﹣1)2+3 D.y=2(x﹣2)2+36.反比例函数的图象经过点,则下列各点中,在这个函数图象上的是()A. B. C. D.7.如图是由四个相同的小正方体组成的立体图形,它的主视图为().A. B. C. D.8.已知二次函数y=(a﹣1)x2﹣x+a2﹣1图象经过原点,则a的取值为()A.a=±1 B.a=1 C.a=﹣1 D.无法确定9.在△ABC中,若tanA=1,sinB=,你认为最确切的判断是()A.△ABC是等腰三角形 B.△ABC是等腰直角三角形C.△ABC是直角三角形 D.△ABC是一般锐角三角形10.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是A.55° B.60° C.65° D.70°二、填空题(每小题3分,共24分)11.如图,已知A(5,0),B(4,4),以OA、AB为边作▱OABC,若一个反比例函数的图象经过C点,则这个函数的解析式为_____.12.如图,AB是⊙O的直径,且AB=4,点C是半圆AB上一动点(不与A,B重合),CD平分∠ACB交⊙O于点D,点I是△ABC的内心,连接BD.下列结论:①点D的位置随着动点C位置的变化而变化;②ID=BD;③OI的最小值为;④ACBC=CD.其中正确的是_____________.(把你认为正确结论的序号都填上)13.在反比例函数y=﹣的图象上有两点(﹣,y1),(﹣1,y1),则y1_____y1.(填>或<)14.如图,在平面直角坐标系中,菱形的边在轴上,与交于点(4,2),反比例函数的图象经过点.若将菱形向左平移个单位,使点落在该反比例函数图象上,则的值为_____________.15.汽车刹车后行驶的距离(单位:)关于行驶的时间(单位:)的函数解析式是.汽车刹车后到停下来前进了______.16.如图,AB为⊙O的直径,CD是弦,且CD⊥AB于点P,若AB=4,OP=1,则弦CD所对的圆周角等于_____度.17.已知x=1是一元二次方程x2﹣3x+a=0的一个根,则方程的另一个根为_____.18.若反比例函数的图像在二、四象限,其图像上有两点,,则______(填“”或“”或“”).三、解答题(共66分)19.(10分)如图,是的直径,点在的延长线上,平分交于点,且的延长线,垂足为点.(1)求证:直线是的切线;(2)若,,求的长.20.(6分)如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连结CD.(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.21.(6分)在平面直角坐标系中,存在抛物线以及两点和.(1)求该抛物线的顶点坐标;(2)若该抛物线经过点,求此抛物线的表达式;(3)若该抛物线与线段只有一个公共点,结合图象,求的取值范围.22.(8分)太阳能光伏建筑是现代绿色环保建筑之一,老张准备把自家屋顶改建成光伏瓦面,改建前屋顶截面△ABC如图2所示,BC=10米,∠ABC=∠ACB=36°,改建后顶点D在BA的延长线上,且∠BDC=90°,求改建后南屋面边沿增加部分AD的长.(结果精确到0.1米)(参考数据:sin18°≈0.31,cos18°≈0.1.tan18°≈0.32,sin36°≈0.2.cos36°≈0.81,tan36°≈0.73)23.(8分)如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC于点D,连接BD.(1)求证:∠A=∠CBD.(2)若AB=10,AD=6,M为线段BC上一点,请写出一个BM的值,使得直线DM与⊙O相切,并说明理由.24.(8分)综合与探究问题情境:(1)如图1,两块等腰直角三角板△ABC和△ECD如图所示摆放,其中∠ACB=∠DCE=90°,点F,H,G分别是线段DE,AE,BD的中点,A,C,D和B,C,E分别共线,则FH和FG的数量关系是,位置关系是.合作探究:(2)如图2,若将图1中的△DEC绕着点C顺时针旋转至A,C,E在一条直线上,其余条件不变,那么(1)中的结论还成立吗?若成立,请证明,若不成立,请说明理由.(3)如图3,若将图1中的△DEC绕着点C顺时针旋转一个锐角,那么(1)中的结论是否还成立?若成立,请证明,若不成立,请说明理由.25.(10分)如图,已知在菱形ABCD中,∠ABC=60°,对角线AC=8,求菱形ABCD的周长和面积.26.(10分)某水果批发商销售每箱进价为40元的苹果.经市场调研发现:若每箱以50元的价格销售,平均每天销售90箱;价格每提高1元,则平均每天少销售3箱.设每箱的销售价为x元(x>50),平均每天的销售量为y箱,该批发商平均每天的销售利润w元.(1)y与x之间的函数解析式为__________;(2)求w与x之间的函数解析式;(3)当x为多少元时,可以获得最大利润?最大利润是多少?
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据年利润平均增长率,列出变化增长前后的关系方程式进行求解.【详解】设这两年的年利润平均增长率为x,列方程为:300(1+x)2=507.故选B.【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是怎么利用年利润平均增长率列式计算.2、B【分析】①正确.只要证明EC=EA=BC,推出∠ACB=90°,再利用三角形中位线定理即可判断.
②错误.想办法证明BF=2OF,推出S△BOC=3S△OCF即可判断.
③正确.设BC=BE=EC=a,求出AC,BD即可判断.
④正确.求出BF,OF,DF(用a表示),通过计算证明即可.【详解】解:∵四边形ABCD是平行四边形,
∴CD∥AB,OD=OB,OA=OC,
∴∠DCB+∠ABC=180°,
∵∠ABC=60°,
∴∠DCB=120°,
∵EC平分∠DCB,
∴∠ECB=∠DCB=60°,
∴∠EBC=∠BCE=∠CEB=60°,
∴△ECB是等边三角形,
∴EB=BC,
∵AB=2BC,
∴EA=EB=EC,
∴∠ACB=90°,
∵OA=OC,EA=EB,
∴OE∥BC,
∴∠AOE=∠ACB=90°,
∴EO⊥AC,故①正确,
∵OE∥BC,
∴△OEF∽△BCF,
∴,
∴OF=OB,
∴S△AOD=S△BOC=3S△OCF,故②错误,
设BC=BE=EC=a,则AB=2a,AC=a,OD=OB=a,
∴BD=a,
∴AC:BD=a:a=:7,故③正确,
∵OF=OB=a,
∴BF=a,
∴BF2=a2,OF•DF=a•a2,
∴BF2=OF•DF,故④正确,
故选:B.【点睛】此题考查相似三角形的判定和性质,平行四边形的性质,角平分线的定义,解直角三角形,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.3、C【分析】根据弧长的公式进行计算即可.【详解】解:设半径为r,∵扇形的弧长为3π,所含的圆心角为120°,∴=3π,∴r=,故选:C.【点睛】此题考查的是根据弧长和圆心角求半径,掌握弧长公式是解决此题的关键.4、A【分析】根据圆周角定理和正切函数的定义,即可求解.【详解】∵∠1与∠2是同弧所对的圆周角,∴∠1=∠2,∴tan∠1=tan∠2=,故选A.【点睛】本题主要考查圆周角定理和正切函数的定义,把∠1的正切值化为∠2的正切值,是解题的关键.5、C【解析】先提出二次项系数,再加上一次项系数一半的平方,即得出顶点式的形式.【详解】解:提出二次项系数得,y=2(x2﹣2x)+5,配方得,y=2(x2﹣2x+1)+5﹣2,即y=2(x﹣1)2+1.故选:C.【点睛】本题考查二次函数的三种形式,一般式:y=ax2+bx+c,顶点式:y=a(x-h)2+k;两根式:y=6、D【分析】计算k值相等即可判断该点在此函数图象上.【详解】k=-23=-6,A.23=6,该点不在反比例函数的图象上;B.-2(-3)=6,该点不在反比例函数的图象上;C.16=6,该点不在反比例函数的图象上,D.1(-6)=-6,该点在反比例函数的图象上,故选:D.【点睛】此题考查反比例函数的性质,正确计算k值即可判断.7、A【分析】根据几何体的三视图解答即可.【详解】根据立体图形得到:主视图为:,左视图为:,俯视图为:,故答案为:A.【点睛】此题考查小正方体组成的几何体的三视图,解题的关键是掌握三视图的视图角度及三视图的画法.8、C【分析】将(0,0)代入y=(a﹣1)x2﹣x+a2﹣1即可得出a的值.【详解】解:∵二次函数y=(a﹣1)x2﹣x+a2﹣1的图象经过原点,∴a2﹣1=0,∴a=±1,∵a﹣1≠0,∴a≠1,∴a的值为﹣1.故选:C.【点睛】本题考查了二次函数,二次函数图像上的点满足二次函数解析式,熟练掌握这一点是解题的关键,同时解题过程中要注意二次项系数不为0.9、B【分析】试题分析:由tanA=1,sinB=结合特殊角的锐角三角函数值可得∠A、∠B的度数,即可判断△ABC的形状.【详解】∵tanA=1,sinB=∴∠A=45°,∠B=45°∴△ABC是等腰直角三角形故选B.考点:特殊角的锐角三角函数值点评:本题是特殊角的锐角三角函数值的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,难度一般.10、C【分析】根据旋转的性质和三角形内角和解答即可.【详解】∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°-20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选C.【点睛】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.二、填空题(每小题3分,共24分)11、y=﹣【分析】直接利用平行四边形的性质得出C点坐标,再利用反比例函数解析式的求法得出答案.【详解】解:∵A(5,0),B(4,4),以OA、AB为边作▱OABC,∴BC=AO=5,BE=4,EO=4,∴EC=1,故C(﹣1,4),若一个反比例函数的图象经过C点,则这个函数的解析式为:y=﹣.故答案为:y=﹣.【点睛】本题主要考查的是平行四边形的性质和反比例函数解析式的求法,将反比例函数上的点带入解析式中即可求解.12、②④【分析】①在同圆或等圆中,根据圆周角相等,则弧相等可作判断;②连接IB,根据点I是△ABC的内心,得到,可以证得,即有,可以判断②正确;③当OI最小时,经过圆心O,作,根据等腰直角三角形的性质和勾股定理,可求出,可判断③错误;④用反证法证明即可.【详解】解:平分,AB是⊙O的直径,,,是的直径,是半圆的中点,即点是定点;故①错误;如图示,连接IB,∵点I是△ABC的内心,∴又∵,∴即有∴,故②正确;如图示,当OI最小时,经过圆心O,过I点,作,交于点∵点I是△ABC的内心,经过圆心O,∴,∵∴是等腰直角三角形,又∵,∴,设,则,,∴,解之得:,即:,故③错误;假设,∵点C是半圆AB上一动点,则点C在半圆AB上对于任意位置上都满足,如图示,当经过圆心O时,,,∴与假设矛盾,故假设不成立,∴故④正确;综上所述,正确的是②④,故答案是:②④【点睛】此题考查了三角形的内心的定义和性质,等腰直角三角形的判定与性质,三角形外接圆有关的性质,角平分线的定义等知识点,熟悉相关性质是解题的关键.13、>【分析】直接将(﹣,y2),(﹣2,y2)代入y=﹣,求出y2,y2即可.【详解】解:∵反比例函数y=﹣的图象上有两点(﹣,y2),(﹣2,y2),∴=4,y2=﹣=2.∵4>2,∴y2>y2.故答案为:>.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14、1【分析】根据菱形的性质得出CD=AD,BC∥OA,根据D
(4,2)和反比例函数的图象经过点D求出k=8,C点的纵坐标是2×2=4,求出C的坐标,即可得出答案.【详解】∵四边形ABCO是菱形,∴CD=AD,BC∥OA,∵D
(4,2),反比例函数的图象经过点D,∴k=8,C点的纵坐标是2×2=4,∴,把y=4代入得:x=2,∴n=3−2=1,∴向左平移1个单位长度,反比例函数能过C点,故答案为1.【点睛】本题主要考查了反比例函数图象上点的坐标特征,菱形的性质,坐标与图形变化-平移,数形结合思想是关键.15、6【分析】根据二次函数的解析式可得出汽车刹车时时间,将其代入二次函数解析式中即可得出s的值.【详解】解:根据二次函数解析式=-6(t²-2t+1-1)=-6(t-1)²+6可知,汽车的刹车时间为t=1s,当t=1时,=12×1-6×1²=6(m)故选:6【点睛】本题考查了二次函数性质的应用,理解透题意是解题的关键.16、60或1.【分析】先确定弦CD所对的圆周角∠CBD和∠CAD两个,再利用圆的相关性质及菱形的判定证四边形ODBC是菱形,推出,根据圆内接四边形对角互补即可分别求出和的度数.【详解】如图,连接OC,OD,BC,BD,AC,AD,∵AB为⊙O的直径,AB=4,∴OB=2,又∵OP=1,∴BP=1,∵CD⊥AB,∴CD垂直平分OB,∴CO=CB,DO=DB,又OC=OD,∴OC=CB=DB=OD,∴四边形ODBC是菱形,∴∠COD=∠CBD,∵∠COD=2∠CAD,∴∠CBD=2∠CAD,又∵四边形ADBC是圆内接四边形,∴∠CAD+∠CBD=180°,∴∠CAD=60°,∠CBD=1°,∵弦CD所对的圆周角有∠CAD和∠CBD两个,故答案为:60或1.【点睛】本题考查了圆周角的度数问题,掌握圆的有关性质、菱形的性质以及判定定理是解题的关键.17、【解析】设方程另一个根为x,根据根与系数的关系得,然后解一次方程即可.【详解】设方程另一个根为x,根据题意得x+1=3,解得x=2.故答案为:x=2.【点睛】本题主要考查一元二次方程根与系数的关系,熟记公式是解决本题的关键.18、<【解析】分析:根据反比例函数的增减性即可得出答案.详解:∵图像在二、四象限,∴在每一个象限内,y随着x的增大而增大,∵1<2,∴.点睛:本题主要考查的是反比例函数的增减性,属于基础题型.对于反比例函数,当k>0时,在每一个象限内,y随着x的增大而减小;当k<0时,在每一个象限内,y随着x的增大而增大.三、解答题(共66分)19、(1)见解析;(2)【分析】(1)连接OC,由角平分线的性质和等腰三角形的性质可得∠DAC=∠EAC,可得AE∥OC,由平行线的性质可得∠OCD=90°,可得结论;
(2)利用勾股定理得出CD,再利用平行线分线段成比例进行计算即可.【详解】证明:(1)连接∵,∴,∵,∴,∴,∵∴,∴,∴是的切线(2)∵,∴,又∵,∴∵,∴∴∴∴.【点睛】此题考查切线的判定和性质,等腰三角形的性质,平行线分线段成比例,熟练运用切线的判定和性质是解题的关键.20、(1)y=x2+6x+5;(2)①S△PBC的最大值为;②存在,点P的坐标为P(﹣,﹣)或(0,5).【解析】(1)将点A、B坐标代入二次函数表达式,即可求出二次函数解析式;(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1,设点G(t,t+1),则点P(t,t2+6t+5),利用三角形面积公式求出最大值即可;②设直线BP与CD交于点H,当点P在直线BC下方时,求出线段BC的中点坐标为(﹣,﹣),过该点与BC垂直的直线的k值为﹣1,求出直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD的表达式为:y=2x+2…④,、联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=x﹣1…⑤,联立⑤和y=x2+6x+5并解得:x=﹣,即可求出P点;当点P(P′)在直线BC上方时,根据∠PBC=∠BCD求出BP′∥CD,求出直线BP′的表达式为:y=2x+5,联立y=x2+6x+5和y=2x+5,求出x,即可求出P.【详解】解:(1)将点A、B坐标代入二次函数表达式得:,解得:,故抛物线的表达式为:y=x2+6x+5…①,令y=0,则x=﹣1或﹣5,即点C(﹣1,0);(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1…②,设点G(t,t+1),则点P(t,t2+6t+5),S△PBC=PG(xC﹣xB)=(t+1﹣t2﹣6t﹣5)=﹣t2﹣t﹣6,∵-<0,∴S△PBC有最大值,当t=﹣时,其最大值为;②设直线BP与CD交于点H,当点P在直线BC下方时,∵∠PBC=∠BCD,∴点H在BC的中垂线上,线段BC的中点坐标为(﹣,﹣),过该点与BC垂直的直线的k值为﹣1,设BC中垂线的表达式为:y=﹣x+m,将点(﹣,﹣)代入上式并解得:直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD的表达式为:y=2x+2…④,联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=x﹣1…⑤,联立①⑤并解得:x=﹣或﹣4(舍去﹣4),故点P(﹣,﹣);当点P(P′)在直线BC上方时,∵∠PBC=∠BCD,∴BP′∥CD,则直线BP′的表达式为:y=2x+s,将点B坐标代入上式并解得:s=5,即直线BP′的表达式为:y=2x+5…⑥,联立①⑥并解得:x=0或﹣4(舍去﹣4),故点P(0,5);故点P的坐标为P(﹣,﹣)或(0,5).【点睛】本题考查的是二次函数,熟练掌握抛物线的性质是解题的关键.21、(1)(0,2);(2);(3)m=2或.【分析】(1)是顶点式,可得到结论;
(2)把A点坐标代入得方程,于是得到结论;
(3)分两种情况:当抛物线开口向上或向下时,分别画出图形,找到临界位置关系,求出m的值,再进行分析变化趋势可得到结论.【详解】(1)是顶点式,顶点坐标为;(2)∵抛物线经过点,
∴m=9m+2,
解得:,∴(3)如图1,当抛物线开口向上时,抛物线顶点在线段上时,;当m>2时,直线x=1交抛物线于点(1,m+2),交点位于点B上方,所以此时线段与抛物线一定有两个交点,不符合题意;如图2,当抛物线开口向下时,抛物线顶过点时,;直线x=-3交抛物线于点(-3,9m+2),当时,9m+2<m,交点位于点A下方,直线x=1交抛物线于点(1,m+2),交点位于点B上方,所以此时线段与抛物线一定有且只有一个交点,符合题意;综上所述,当或时,抛物线与线段只有一个公共点.【点睛】本题考查了抛物线的性质,直线与抛物线的位置关系,考虑特殊情况是关键,考查了数形结合的数学思想.22、1.9米【解析】试题分析:在直角三角形BCD中,由BC与sinB的值,利用锐角三角函数定义求出CD的长,在直角三角形ACD中,由∠ACD度数,以及CD的长,利用锐角三角函数定义求出AD的长即可.试题解析:∵∠BDC=90°,BC=10,sinB=,∴CD=BC•sinB=10×0.2=5.9,∵在Rt△BCD中,∠BCD=90°﹣∠B=90°﹣36°=54°,∴∠ACD=∠BCD﹣∠ACB=54°﹣36°=18°,∴在Rt△ACD中,tan∠ACD=,∴AD=CD•tan∠ACD=5.9×0.32=1.888≈1.9(米),则改建后南屋面边沿增加部分AD的长约为1.9米.考点:解直角三角形的应用23、(1)证明见解析;(2)BM=,理由见解析.【分析】(1)利用圆周角定理得到∠ADB=90°,然后就利用等角的余角相等得到结论;(2)如图,连接OD,DM,先计算出BD=8,OA=5,再证明Rt△CBD∽Rt△BAD,利用相似比得到BC=,取BC的中点M,连接DM、OD,如图,证明∠2=∠4得到∠ODM=90°,根据切线的判定定理可确定DM为⊙O的切线,然后计算BM的长即可.【详解】(1)∵AB为⊙O直径,∴∠ADB=90°,∴∠A+∠ABD=90°.∵∠ABC=90°,∴∠CBD+∠ABD=90°,∴∠A=∠CBD;(2)BM=.理由如下:如图,连接OD,DM,∵∠ADB=90°,AB=10,AD=6,∴BD==8,OA=5,∵∠A=∠CBD,∵Rt△CBD∽Rt△BAD,∴=,即=,解得BC=取BC的中点M,连接DM、OD,如图,∵DM为Rt△BCD斜边BC的中线,∴DM=BM,∵∠2=∠4,∵OB=OD,∴∠1=∠3,∴∠1+∠2=∠3+∠4=90°,即∠ODM=90°,∴OD⊥DM,∴DM为⊙O的切线,此时BM=BC=.【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理,掌握切线的判定定理及圆周角定理是关键.24、(1)FG=FH,FG⊥FH;(2)(1)中结论成立,证明见解析;(3)(1)中的结论成立,结论是FH=FG,FH⊥FG.理由见解析.【解析】试题分析:(1)证BE=AD,根据三角形的中位线推出FH=AD,FH∥AD,FG=BE,FG∥BE,即可推出答案;
(2)证△ACD≌△BCE,推出AD=BE,根据三角形的中位线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度云服务合同服务内容与系统维护
- 2024年度工程监理合同服务内容
- 2024年度C型钢损害赔偿合同
- 2024年度文化传媒推广合同
- 2024年度建筑工程施工用彩钢房租赁合同
- 记录机用纸市场发展现状调查及供需格局分析预测报告
- 2024年度版权转让合同标的为音乐专辑制作
- 2024年度保温板施工风险管理与控制合同
- 2024年度店面租赁合同:甲方出租店面乙方承租并支付租金的协议
- 2024年度办公楼维修基金管理合同:某物业管理公司与某办公楼业主委员会就维修基金管理的合同
- 预案演练知识培训
- 第三单元 勇担社会责任(复习课件)-八年级道德与法治上册同步备课系列(统编版)
- 医院药房人员培训课件
- 2024年度Logo设计及品牌形象重塑合同
- 中小学学校国家智慧教育云平台应用项目实施方案
- 人教版小学数学六年级上册《扇形的认识》课件
- 2024-2030年铝型材行业市场深度调研及前景趋势与投资战略研究报告
- 2024-2030年辣椒种植行业市场深度分析及发展策略研究报告
- 通信工程施工方案
- 初中英语研修方案
- 化工厂拆除施工方案
评论
0/150
提交评论