




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第第页2019、2020年浙江中考数学试题分类(5)——三角形与四边形一.三角形三边关系(共3小题)1.(2020•绍兴)长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为()A.4 B.5 C.6 D.72.(2019•台州)下列长度的三条线段,能组成三角形的是()A.3,4,8 B.5,6,10 C.5,5,11 D.5,6,113.(2019•金华)若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A.1 B.2 C.3 D.8二.三角形内角和定理(共2小题)4.(2019•绍兴)如图,墙上钉着三根木条a,b,c,量得∠1=70°,∠2=100°,那么木条a,b所在直线所夹的锐角是()A.5° B.10° C.30° D.70°5.(2019•杭州)在△ABC中,若一个内角等于另外两个内角的差,则()A.必有一个内角等于30° B.必有一个内角等于45° C.必有一个内角等于60° D.必有一个内角等于90°三.全等三角形的判定与性质(共4小题)6.(2020•湖州)如图,已知OT是Rt△ABO斜边AB上的高线,AO=BO.以O为圆心,OT为半径的圆交OA于点C,过点C作⊙O的切线CD,交AB于点D.则下列结论中错误的是()A.DC=DT B.AD=2DT C.BD=BO D.2OC=57.(2020•宁波)△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长 B.△AFH的周长 C.四边形FBGH的周长 D.四边形ADEC的周长8.(2020•台州)如图,已知AB=AC,AD=AE,BD和CE相交于点O.(1)求证:△ABD≌△ACE;(2)判断△BOC的形状,并说明理由.9.(2020•温州)如图,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,点A,C,D依次在同一直线上,且AB∥DE.(1)求证:△ABC≌△DCE.(2)连结AE,当BC=5,AC=12时,求AE的长.四.角平分线的性质(共1小题)10.(2019•湖州)如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是()A.24 B.30 C.36 D.42五.等腰三角形的性质(共2小题)11.(2019•衢州)“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动、C点固定,OC=CD=DE,点D、E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60° B.65° C.75° D.80°12.(2020•绍兴)问题:如图,在△ABD中,BA=BD.在BD的延长线上取点E,C,作△AEC,使EA=EC.若∠BAE=90°,∠B=45°,求∠DAC的度数.答案:∠DAC=45°.思考:(1)如果把以上“问题”中的条件“∠B=45°”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由.(2)如果把以上“问题”中的条件“∠B=45°”去掉,再将“∠BAE=90°”改为“∠BAE=n°”,其余条件不变,求∠DAC的度数.六.等边三角形的判定与性质(共1小题)13.(2020•台州)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是.七.勾股定理(共2小题)14.(2019•宁波)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积 B.最大正方形的面积 C.较小两个正方形重叠部分的面积 D.最大正方形与直角三角形的面积和15.(2020•绍兴)如图,已知边长为2的等边三角形ABC中,分别以点A,C为圆心,m为半径作弧,两弧交于点D,连结BD.若BD的长为23,则m的值为.八.勾股定理的证明(共1小题)16.(2020•金华)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O、BD与HC相交于点P.若GO=GP,则S正方形ABCDA.1+2 B.2+2 C.5-2九.勾股定理的应用(共3小题)17.(2019•绍兴)如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为()A.245 B.325 C.123418.(2019•衢州)一块圆形宣传标志牌如图所示,点A,B,C在⊙O上,CD垂直平分AB于点D.现测得AB=8dm,DC=2dm,则圆形标志牌的半径为()A.6dm B.5dm C.4dm D.3dm19.(2020•衢州)图1是由七根连杆链接而成的机械装置,图2是其示意图.已知O,P两点固定,连杆PA=PC=140cm,AB=BC=CQ=QA=60cm,OQ=50cm,O,P两点间距与OQ长度相等.当OQ绕点O转动时,点A,B,C的位置随之改变,点B恰好在线段MN上来回运动.当点B运动至点M或N时,点A,C重合,点P,Q,A,B在同一直线上(如图3).(1)点P到MN的距离为cm.(2)当点P,O,A在同一直线上时,点Q到MN的距离为cm.一十.等腰直角三角形(共1小题)20.(2019•宁波)已知直线m∥n,将一块含45°角的直角三角板ABC按如图方式放置,其中斜边BC与直线n交于点D.若∠1=25°,则∠2的度数为()A.60° B.65° C.70° D.75°一十一.三角形中位线定理(共1小题)21.(2020•宁波)如图,在Rt△ABC中,∠ACB=90°,CD为中线,延长CB至点E,使BE=BC,连结DE,F为DE中点,连结BF.若AC=8,BC=6,则BF的长为()A.2 B.2.5 C.3 D.4一十二.三角形综合题(共1小题)22.(2020•金华)如图,在△ABC中,AB=42,∠B=45°,∠C=60°.(1)求BC边上的高线长.(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.①如图2,当点P落在BC上时,求∠AEP的度数.②如图3,连结AP,当PF⊥AC时,求AP的长.一十三.多边形(共2小题)23.(2020•湖州)四边形具有不稳定性,对于四条边长确定的四边形.当内角度数发生变化时,其形状也会随之改变.如图,改变正方形ABCD的内角,正方形ABCD变为菱形ABC′D′.若∠D′AB=30°,则菱形ABC′D′的面积与正方形ABCD的面积之比是()A.1 B.12 C.22 24.(2019•衢州)如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形.则原来的纸带宽为()A.1 B.2 C.3 D.2一十四.平面镶嵌(密铺)(共1小题)25.(2019•绍兴)把边长为2的正方形纸片ABCD分割成如图的四块,其中点O为正方形的中心,点E,F分别为AB,AD的中点.用这四块纸片拼成与此正方形不全等的四边形MNPQ(要求这四块纸片不重叠无缝隙),则四边形MNPQ的周长是.一十五.平行四边形的性质(共2小题)26.(2020•温州)如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD为边作▱BCDE,则∠E的度数为()A.40° B.50° C.60° D.70°27.(2020•绍兴)如图,点E是▱ABCD的边CD的中点,连接AE并延长,交BC的延长线于点F.(1)若AD的长为2,求CF的长.(2)若∠BAF=90°,试添加一个条件,并写出∠F的度数.一十六.平行四边形的判定与性质(共1小题)28.(2019•湖州)如图,已知在△ABC中,D,E,F分别是AB,BC,AC的中点,连结DF,EF,BF.(1)求证:四边形BEFD是平行四边形;(2)若∠AFB=90°,AB=6,求四边形BEFD的周长.一十七.菱形的性质(共1小题)29.(2019•温州)三个形状大小相同的菱形按如图所示方式摆放,已知∠AOB=∠AOE=90°,菱形的较短对角线长为2cm.若点C落在AH的延长线上,则△ABE的周长为cm.一十八.菱形的判定(共1小题)30.(2020•嘉兴)如图,▱ABCD的对角线AC,BD相交于点O,请添加一个条件:,使▱ABCD是菱形.一十九.矩形的性质(共6小题)31.(2019•台州)如图,有两张矩形纸片ABCD和EFGH,AB=EF=2cm,BC=FG=8cm.把纸片ABCD交叉叠放在纸片EFGH上,使重叠部分为平行四边形,且点D与点G重合.当两张纸片交叉所成的角α最小时,tanα等于()A.14 B.12 C.81732.(2019•金华)如图,矩形ABCD的对角线交于点O.已知AB=m,∠BAC=∠α,则下列结论错误的是()A.∠BDC=∠α B.BC=m•tanα C.AO=m2sinα D.33.(2020•绍兴)将两条邻边长分别为2,1的矩形纸片剪成四个等腰三角形纸片(无余纸片),各种剪法剪出的等腰三角形中,其中一个等腰三角形的腰长可以是下列数中的(填序号).①2,②1,③2-1,④32,⑤34.(2019•绍兴)有一块形状如图的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B=90°,∠C=135°,∠E>90°,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.35.(2019•舟山)如图,在矩形ABCD中,点E,F在对角线BD.请添加一个条件,使得结论“AE=CF”成立,并加以证明.36.(2019•宁波)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.二十.正方形的性质(共5小题)37.(2020•湖州)七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形可以制作一副中国七巧板或一副日本七巧板,如图1所示.分别用这两副七巧板试拼如图2中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是()A.1和1 B.1和2 C.2和1 D.2和238.(2019•绍兴)正方形ABCD的边AB上有一动点E,以EC为边作矩形ECFG,且边FG过点D.在点E从点A移动到点B的过程中,矩形ECFG的面积()A.先变大后变小 B.先变小后变大 C.一直变大 D.保持不变39.(2020•绍兴)如图1,直角三角形纸片的一条直角边长为2,剪四块这样的直角三角形纸片,把它们按图2放入一个边长为3的正方形中(纸片在结合部分不重叠无缝隙),则图2中阴影部分面积为.40.(2019•绍兴)如图,在直线AP上方有一个正方形ABCD,∠PAD=30°,以点B为圆心,AB长为半径作弧,与AP交于点A,M,分别以点A,M为圆心,AM长为半径作弧,两弧交于点E,连结ED,则∠ADE的度数为.41.(2019•杭州)如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.二十一.正方形的判定与性质(共1小题)42.(2020•台州)下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是()A.由②推出③,由③推出① B.由①推出②,由②推出③ C.由③推出①,由①推出② D.由①推出③,由③推出②二十二.四边形综合题(共8小题)43.(2020•衢州)【性质探究】如图,在矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAC,交BC于点E.作DF⊥AE于点H,分别交AB,AC于点F,G.(1)判断△AFG的形状并说明理由.(2)求证:BF=2OG.【迁移应用】(3)记△DGO的面积为S1,△DBF的面积为S2,当S1S2【拓展延伸】(4)若DF交射线AB于点F,【性质探究】中的其余条件不变,连结EF,当△BEF的面积为矩形ABCD面积的110时,请直接写出tan∠BAE44.(2020•嘉兴)在一次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC和DEF拼在一起,使点A与点F重合,点C与点D重合(如图1),其中∠ACB=∠DFE=90°,BC=EF=3cm,AC=DF=4cm,并进行如下研究活动.活动一:将图1中的纸片DEF沿AC方向平移,连结AE,BD(如图2),当点F与点C重合时停止平移.【思考】图2中的四边形ABDE是平行四边形吗?请说明理由.【发现】当纸片DEF平移到某一位置时,小兵发现四边形ABDE为矩形(如图3).求AF的长.活动二:在图3中,取AD的中点O,再将纸片DEF绕点O顺时针方向旋转α度(0≤α≤90),连结OB,OE(如图4).【探究】当EF平分∠AEO时,探究OF与BD的数量关系,并说明理由.45.(2020•绍兴)如图1,矩形DEFG中,DG=2,DE=3,Rt△ABC中,∠ACB=90°,CA=CB=2,FG,BC的延长线相交于点O,且FG⊥BC,OG=2,OC=4.将△ABC绕点O逆时针旋转α(0°≤α<180°)得到△A′B′C′.(1)当α=30°时,求点C′到直线OF的距离.(2)在图1中,取A′B′的中点P,连结C′P,如图2.①当C′P与矩形DEFG的一条边平行时,求点C′到直线DE的距离.②当线段A′P与矩形DEFG的边有且只有一个交点时,求该交点到直线DG的距离的取值范围.46.(2020•温州)如图,在四边形ABCD中,∠A=∠C=90°,DE,BF分别平分∠ADC,∠ABC,并交线段AB,CD于点E,F(点E,B不重合).在线段BF上取点M,N(点M在BN之间),使BM=2FN.当点P从点D匀速运动到点E时,点Q恰好从点M匀速运动到点N.记QN=x,PD=y,已知y=-65x+12,当Q为BF中点时,y(1)判断DE与BF的位置关系,并说明理由.(2)求DE,BF的长.(3)若AD=6.①当DP=DF时,通过计算比较BE与BQ的大小关系.②连结PQ,当PQ所在直线经过四边形ABCD的一个顶点时,求所有满足条件的x的值.47.(2019•舟山)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=a,AD=h,求正方形PQMN的边长(用a,h表示).(2)操作:如何画出这个正方形PQMN呢?如图2,小波画出了图1的△ABC,然后按数学家波利亚在《怎样解题》中的方法进行操作:先在AB上任取一点P',画正方形P'Q'M'N',使点Q',M'在BC边上,点N'在△ABC内,然后连结BN',并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PQMN.(3)推理:证明图2中的四边形PQMN是正方形.(4)拓展:小波把图2中的线段BN称为“波利亚线”,在该线上截取NE=NM,连结EQ,EM(如图3),当∠QEM=90°时,求“波利亚线”BN的长(用a,h表示).请帮助小波解决“温故”、“推理”、“拓展”中的问题.48.(2019•宁波)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.49.(2019•嘉兴)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=6,AD=4,求正方形PQMN的边长.(2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图2,任意画△ABC,在AB上任取一点P',画正方形P'Q'M'N',使Q',M'在BC边上,N'在△ABC内,连结BN'并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PQMN.小波把线段BN称为“波利亚线”.(3)推理:证明图2中的四边形PQMN是正方形.(4)拓展:在(2)的条件下,在射线BN上截取NE=NM,连结EQ,EM(如图3).当tan∠NBM=34时,猜想∠请帮助小波解决“温故”、“推理”、“拓展”中的问题.50.(2019•台州)我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.(1)已知凸五边形ABCDE的各条边都相等.①如图1,若AC=AD=BE=BD=CE,求证:五边形ABCDE是正五边形;②如图2,若AC=BE=CE,请判断五边形ABCDE是不是正五边形,并说明理由:(2)判断下列命题的真假.(在括号内填写“真”或“假”)如图3,已知凸六边形ABCDEF的各条边都相等.①若AC=CE=EA,则六边形ABCDEF是正六边形;()②若AD=BE=CF,则六边形ABCDEF是正六边形.()
2019、2020年浙江中考数学试题分类(5)——三角形与四边形参考答案与试题解析一.三角形三边关系(共3小题)1.【解答】解:①长度分别为5、3、4,能构成三角形,且最长边为5;②长度分别为2、6、4,不能构成三角形;③长度分别为2、7、3,不能构成三角形;④长度分别为6、3、3,不能构成三角形;综上所述,得到三角形的最长边长为5.故选:B.2.【解答】解:A选项,3+4=7<8,两边之和小于第三边,故不能组成三角形B选项,5+6=11>10,10﹣5<6,两边之各大于第三边,两边之差小于第三边,故能组成三角形C选项,5+5=10<11,两边之和小于第三边,故不能组成三角形D选项,5+6=11,两边之和不大于第三边,故不能组成三角形故选:B.3.【解答】解:由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,即符合的只有3,故选:C.二.三角形内角和定理(共2小题)4.【解答】解:∠3=∠2=100°,∴木条a,b所在直线所夹的锐角=180°﹣100°﹣70°=10°,故选:B.5.【解答】解:∵∠A+∠B+∠C=180°,∠A=∠C﹣∠B,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故选:D.三.全等三角形的判定与性质(共4小题)6.【解答】解:如图,连接OD.∵OT是半径,OT⊥AB,∴DT是⊙O的切线,∵DC是⊙O的切线,∴DC=DT,故选项A正确,∵OA=OB,∠AOB=90°,∴∠A=∠B=45°,∵DC是切线,∴CD⊥OC,∴∠ACD=90°,∴∠A=∠ADC=45°,∴AC=CD=DT,∴AC=2CD=2DT,故选项∵OD=OD,OC=OT,DC=DT,∴△DOC≌△DOT(SSS),∴∠DOC=∠DOT,∵OA=OB,OT⊥AB,∠AOB=90°,∴∠AOT=∠BOT=45°,∴∠DOT=∠DOC=22.5°,∴∠BOD=∠ODB=67.5°,∴BO=BD,故选项C正确,根据筛选法,故选:D.7.【解答】解:∵△GFH为等边三角形,∴FH=GH,∠FHG=60°,∴∠AHF+∠GHC=120°,∵△ABC为等边三角形,∴AB=BC=AC,∠ACB=∠A=60°,∴∠GHC+∠HGC=120°,∴∠AHF=∠HGC,∴△AFH≌△CHG(AAS),∴AF=CH.∵△BDE和△FGH是两个全等的等边三角形,∴BE=FH,∴五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF,=(BD+DF+AF)+(CE+BE),=AB+BC.∴只需知道△ABC的周长即可.故选:A.8.【解答】证明:(1)∵AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS);(2)△BOC是等腰三角形,理由如下:∵△ABD≌△ACE,∴∠ABD=∠ACE,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC﹣∠ABD=∠ACB﹣∠ACE,∴∠OBC=∠OCB,∴BO=CO,∴△BOC是等腰三角形.9.【解答】证明:(1)∵AB∥DE,∴∠BAC=∠D,又∵∠B=∠DCE=90°,AC=DE,∴△ABC≌△DCE(AAS);(2)∵△ABC≌△DCE,∴CE=BC=5,∵∠ACE=90°,∴AE=AC四.角平分线的性质(共1小题)10.【解答】解:过D作DH⊥AB交BA的延长线于H,∵BD平分∠ABC,∠BCD=90°,∴DH=CD=4,∴四边形ABCD的面积=S△ABD+S△BCD=12AB•DH+12BC•CD故选:B.五.等腰三角形的性质(共2小题)11.【解答】解:∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC,∴∠DCE=∠O+∠ODC=2∠ODC,∵∠O+∠OED=3∠ODC=∠BDE=75°,∴∠ODC=25°,∵∠CDE+∠ODC=180°﹣∠BDE=105°,∴∠CDE=105°﹣∠ODC=80°.故选:D.12.【解答】解:(1)∠DAC的度数不会改变;∵EA=EC,∴∠EAC=∠C,①,∵BA=BD,∴∠BAD=∠BDA,∵∠BAE=90°,∴∠B=90°﹣∠AED=90°﹣2∠C,∴∠BAD=12(180°﹣∠B)=12[180°﹣(90°﹣2∠∴∠DAE=90°﹣∠BAD=90°﹣(45°+∠C)=45°﹣∠C,②由①,②得,∠DAC=∠DAE+∠CAE=45°﹣∠C+∠C=45°;(2)设∠ABC=m°,则∠BAD=12(180°﹣m°)=90°-12m°,∠AEB=180°﹣∴∠DAE=n°﹣∠BAD=n°﹣90°+12∵EA=EC,∴∠CAE=12∠AEB=90°-12∴∠DAC=∠DAE+∠CAE=n°﹣90°+12m°+90°-12n°-1六.等边三角形的判定与性质(共1小题)13.【解答】解:∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点,∴EF=2,∵△ABC是等边三角形,∴∠B=∠C=60°,又∵DE∥AB,DF∥AC,∴∠DEF=∠B=60°,∠DFE=∠C=60°,∴△DEF是等边三角形,∴剪下的△DEF的周长是2×3=6.故答案为:6.七.勾股定理(共2小题)14.【解答】解:设直角三角形的斜边长为c,较长直角边为b,较短直角边为a,由勾股定理得,c2=a2+b2,阴影部分的面积=c2﹣b2﹣a(c﹣b)=a2﹣ac+ab=a(a+b﹣c),较小两个正方形重叠部分的宽=a﹣(c﹣b),长=a,则较小两个正方形重叠部分底面积=a(a+b﹣c),∴知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积,故选:C.15.【解答】解:由作图知,点D在AC的垂直平分线上,∵△ABC是等边三角形,∴点B在AC的垂直平分线上,∴BD垂直平分AC,设垂足为E,∵AC=AB=2,∴BE=3当点D、B在AC的两侧时,如图,∵BD=23,∴BE=DE,∴AD=AB=2,∴m=2;当点D、B在AC的同侧时,如图,∵BD′=23,∴D′E=33,∴AD′=(33)∴m=27,综上所述,m的值为2或27,故答案为:2或27.八.勾股定理的证明(共1小题)16.【解答】解:∵四边形EFGH为正方形,∴∠EGH=45°,∠FGH=90°,∵OG=GP,∴∠GOP=∠OPG=67.5°,∴∠PBG=22.5°,又∵∠DBC=45°,∴∠GBC=22.5°,∴∠PBG=∠GBC,∵∠BGP=∠BGC=90°,BG=BG,∴△BPG≌△BCG(ASA),∴PG=CG.设OG=PG=CG=x,∵O为EG,BD的交点,∴EG=2x,FG=2x∵四个全等的直角三角形拼成“赵爽弦图”,∴BF=CG=x,∴BG=x+2x∴BC2=BG2+CG2=x∴S正方形ABCD故选:B.九.勾股定理的应用(共3小题)17.【解答】解:过点C作CF⊥BG于F,如图所示:设DE=x,则AD=8﹣x,根据题意得:12(8﹣x解得:x=4,∴DE=4,∵∠E=90°,由勾股定理得:CD=D∵∠BCE=∠DCF=90°,∴∠DCE=∠BCF,∵∠DEC=∠BFC=90°,∴△CDE∽△CBF,∴CECF即3CF∴CF=24故选:A.18.【解答】解:连接OA,OD,∵点A,B,C在⊙O上,CD垂直平分AB于点D.AB=8dm,DC=2dm,∴AD=4dm,设圆形标志牌的半径为r,可得:r2=42+(r﹣2)2,解得:r=5,故选:B.19.【解答】解:(1)如图3中,延长PO交MN于T,过点O作OH⊥PQ于H.由题意:OP=OQ=50cm,PQ=PA﹣AQ=140﹣60=80(cm),PM=PA+BC=140+60=200(cm),PT⊥MN,∵OH⊥PQ,∴PH=HQ=40(cm),∵cos∠P=PH∴4050∴PT=160(cm),∴点P到MN的距离为160cm,故答案为160.(2)如图4中,当O,P,A共线时,过Q作QH⊥PT于H.设HA=xcm.由题意AT=PT﹣PA=160﹣140=20(cm),OA=PA﹣OP=140﹣50=90(cm),OQ=50cm,AQ=60cm,∵QH⊥OA,∴QH2=AQ2﹣AH2=OQ2﹣OH2,∴602﹣x2=502﹣(90﹣x)2,解得x=460∴HT=AH+AT=6409(∴点Q到MN的距离为6409cm故答案为6409一十.等腰直角三角形(共1小题)20.【解答】解:设AB与直线n交于点E,则∠AED=∠1+∠B=25°+45°=70°.又直线m∥n,∴∠2=∠AED=70°.故选:C.一十一.三角形中位线定理(共1小题)21.【解答】解:∵在Rt△ABC中,∠ACB=90°,AC=8,BC=6,∴AB=A又∵CD为中线,∴CD=12∵F为DE中点,BE=BC即点B是EC的中点,∴BF是△CDE的中位线,则BF=12故选:B.一十二.三角形综合题(共1小题)22.【解答】解:(1)如图1中,过点A作AD⊥BC于D.在Rt△ABD中,AD=AB•sin45°=42×(2)①如图2中,∵△AEF≌△PEF,∴AE=EP,∵AE=EB,∴BE=EP,∴∠EPB=∠B=45°,∴∠PEB=90°,∴∠AEP=180°﹣90°=90°.②如图3中,由(1)可知:AC=AD∵PF⊥AC,∴∠PFA=90°,∵△AEF≌△PEF,∴∠AFE=∠PFE=45°,∴∠AFE=∠B,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴AFAB=AE∴AF=23,在Rt△AFP,AF=FP,∴AP=2AF=26方法二:AE=BE=PE可得直角三角形ABP,由PF⊥AC,可得∠AFE=45°,可得∠FAP=45°,即∠PAB=30°.AP=ABcos30°=26.一十三.多边形(共2小题)23.【解答】解:根据题意可知菱形ABC′D′的高等于AB的一半,∴菱形ABC′D′的面积为12AB2,正方形ABCD∴菱形ABC′D′的面积与正方形ABCD的面积之比是12故选:B.24.【解答】解:边长为2的正六边形由6个边长为2的等边三角形组成,其中等边三角形的高为原来的纸带宽度,所以原来的纸带宽度=32×故选:C.一十四.平面镶嵌(密铺)(共1小题)25.【解答】解:如图所示:图1的周长为1+2+3+22=6+22图2的周长为1+4+1+4=10;图3的周长为3+5+2+2故四边形MNPQ的周长是6+22或10或8+22.故答案为:6+22或10或8+22.一十五.平行四边形的性质(共2小题)26.【解答】解:∵在△ABC中,∠A=40°,AB=AC,∴∠C=(180°﹣40°)÷2=70°,∵四边形BCDE是平行四边形,∴∠E=70°.故选:D.27.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD∥CF,∴∠DAE=∠CFE,∠ADE=∠FCE,∵点E是CD的中点,∴DE=CE,在△ADE和△FCE中,∠DAE=∠CFE∠ADE=∠FCE∴△ADE≌△FCE(AAS),∴CF=AD=2;(2)∵∠BAF=90°,添加一个条件:当∠B=60°时,∠F=90°﹣60°=30°(答案不唯一).一十六.平行四边形的判定与性质(共1小题)28.【解答】(1)证明:∵D,E,F分别是AB,BC,AC的中点,∴DF∥BC,EF∥AB,∴DF∥BE,EF∥BD,∴四边形BEFD是平行四边形;(2)解:∵∠AFB=90°,D是AB的中点,AB=6,∴DF=DB=DA=12∵四边形BEFD是平行四边形,∴四边形BEFD是菱形,∵DB=3,∴四边形BEFD的周长为12.一十七.菱形的性质(共1小题)29.【解答】解:如图所示,连接IC,连接CH交OI于K,则A,H,C在同一直线上,CI=2,∵三个菱形全等,∴CO=HO,∠AOH=∠BOC,又∵∠AOB=∠AOH+∠BOH=90°,∴∠COH=∠BOC+∠BOH=90°,即△COH是等腰直角三角形,∴∠HCO=∠CHO=45°=∠HOG=∠COK,∴∠CKO=90°,即CK⊥IO,设CK=OK=x,则CO=IO=2x,IK=2x﹣∵Rt△CIK中,(2x﹣x)2+x2=22,解得x2=2+2又∵S菱形BCOI=IO×CK=12IC×∴2x2=12×∴BO=22+∴BE=2BO=42+4,AB=AE=2BO=4+2∴△ABE的周长=42+4+2(4+22)=12+82故答案为:12+82.一十八.菱形的判定(共1小题)30.【解答】解:∵邻边相等的平行四边形是菱形,∴当AD=DC,▱ABCD为菱形;故答案为:AD=DC(答案不唯一).一十九.矩形的性质(共6小题)31.【解答】解:如图,∵∠ADC=∠HDF=90°∴∠CDM=∠NDH,且CD=DH,∠H=∠C=90°∴△CDM≌△HDN(ASA)∴MD=ND,且四边形DNKM是平行四边形∴四边形DNKM是菱形∴KM=DM∵sinα=sin∠DMC=∴当点B与点E重合时,两张纸片交叉所成的角a最小,设MD=a=BM,则CM=8﹣a,∵MD2=CD2+MC2,∴a2=4+(8﹣a)2,∴a=∴CM=∴tanα=tan∠DMC=故选:D.32.【解答】解:A、∵四边形ABCD是矩形,∴∠ABC=∠DCB=90°,AC=BD,AO=CO,BO=DO,∴AO=OB=CO=DO,∴∠DBC=∠ACB,∴由三角形内角和定理得:∠BAC=∠BDC=∠α,故本选项不符合题意;B、在Rt△ABC中,tanα=BC即BC=m•tanα,故本选项不符合题意;C、在Rt△ABC中,AC=mcosα,即AOD、∵四边形ABCD是矩形,∴DC=AB=m,∵∠BAC=∠BDC=α,∴在Rt△DCB中,BD=m故选:C.33.【解答】解:如图所示:则其中一个等腰三角形的腰长可以是①2,②1,③2-1,④32,不可以是故答案为:①②③④.34.【解答】解:(1)①若所截矩形材料的一条边是BC,如图1所示:过点C作CF⊥AE于F,S1=AB•BC=6×5=30;②若所截矩形材料的一条边是AE,如图2所示:过点E作EF∥AB交CD于F,FG⊥AB于G,过点C作CH⊥FG于H,则四边形AEFG为矩形,四边形BCHG为矩形,∵∠C=135°,∴∠FCH=45°,∴△CHF为等腰直角三角形,∴AE=FG=6,HG=BC=5,BG=CH=FH,∴BG=CH=FH=FG﹣HG=6﹣5=1,∴AG=AB﹣BG=6﹣1=5,∴S2=AE•AG=6×5=30;(2)能;理由如下:在CD上取点F,过点F作FM⊥AB于M,FN⊥AE于N,过点C作CG⊥FM于G,则四边形ANFM为矩形,四边形BCGM为矩形,∵∠C=135°,∴∠FCG=45°,∴△CGF为等腰直角三角形,∴MG=BC=5,BM=CG,FG=CG,设AM=x,则BM=6﹣x,∴FM=GM+FG=GM+CG=BC+BM=11﹣x,∴S=AM×FM=x(11﹣x)=﹣x2+11x=﹣(x﹣5.5)2+30.25,∴当x=5.5时,即:AM=5.5时,FM=11﹣5.5=5.5,S的最大值为30.25.35.【解答】解:添加的条件是BE=DF(答案不唯一).证明:∵四边形ABCD是矩形,∴AB∥CD,AB=CD,∴∠ABD=∠BDC,又∵BE=DF(添加),∴△ABE≌△CDF(SAS),∴AE=CF.36.【解答】解:(1)∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°﹣∠GFH,∠DHE=180°﹣∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E为AD中点,∴AE=ED,∵BG=DE,∴AE=BG,AE∥BG,∴四边形ABGE是平行四边形,∴AB=EG,∵EG=FH=2,∴AB=2,∴菱形ABCD的周长=8.二十.正方形的性质(共5小题)37.【解答】解:中国七巧板和日本七巧板能拼成的个数都是2,如图所示:故选:D.38.【解答】解:连接DE,∵S△CDES△CDE=∴矩形ECFG与正方形ABCD的面积相等.故选:D.39.【解答】解:由题意可得,直角三角形的斜边长为3,一条直角边长为2,故直角三角形的另一条直角边长为:32故阴影部分的面积是:2×52×4=故答案为:45.40.【解答】解:∵四边形ABCD是正方形,∴AD=AE,∠DAE=90°,∴∠BAM=180°﹣90°﹣30°=60°,AD=AB,当点E与正方形ABCD的直线AP的同侧时,由题意得,点E与点B重合,∴∠ADE=45°,当点E与正方形ABCD的直线AP的两侧时,由题意得,E′A=E′M,∴△AE′M为等边三角形,∴∠E′AM=60°,∴∠DAE′=360°﹣120°﹣90°=150°,∵AD=AE′,∴∠ADE′=15°,故答案为:15°或45°.41.【解答】解:(1)设正方形CEFG的边长为a,∵正方形ABCD的边长为1,∴DE=1﹣a,∵S1=S2,∴a2=1×(1﹣a),解得,a1=-5即线段CE的长是52(2)证明:∵点H为BC边的中点,BC=1,∴CH=0.5,∴DH=1∵CH=0.5,CG=5∴HG=5∴HD=HG.二十一.正方形的判定与性质(共1小题)42.【解答】解:对角线相等的四边形推不出是正方形或矩形,故①→②,①→③错误,故选项B,C,D错误,故选:A.二十二.四边形综合题(共8小题)43.【解答】(1)解:如图1中,△AFG是等腰三角形.理由:∵AE平分∠BAC,∴∠1=∠2,∵DF⊥AE,∴∠AHF=∠AHG=90°,∵AH=AH,∴△AHF≌△AHG(ASA),∴AF=AG,∴△AFG是等腰三角形.(2)证明:如图2中,过点O作OL∥AB交DF于L,则∠AFG=∠OLG.∵AF=AG,∴∠AFG=∠AGF,∵∠AGF=∠OGL,∴∠OGL=∠OLG,∴OG=OL,∵OL∥AB,∴△DLO∽△DFB,∴OLBF∵四边形ABCD是矩形,∴BD=2OD,∴BF=2OL,∴BF=2OG.(3)解:如图3中,过点D作DK⊥AC于K,则∠DKA=∠CDA=90°,∵∠DAK=∠CAD,∴△ADK∽△ACD,∴DKAD∵S1=12•OG•DK,S2=12•又∵BF=2OG,S1∴DKAD=23=CDAC,设CD=2x,AC∴ADAB(4)解:设OG=a,AG=k.①如图4中,连接EF,当点F在线段AB上时,点G在OA上.∵AF=AG,BF=2OG,∴AF=AG=k,BF=2a,∴AB=k+2a,AC=2(k+a),∴AD2=AC2﹣CD2=[2(k+a)]2﹣(k+2a)2=3k2+4ka,∵∠ABE=∠DAF=90°,∠BAE=∠ADF,∴△ABE∽△DAF,∴BEAF=AB∴BEk+2a∴BE=k(k+2a)由题意:10×12×2a×k(k+2a)AD=∴AD2=10ka,即10ka=3k2+4ka,∴k=2a,∴AD=25a,∴BE=k(k+2a)AD=455∴tan∠BAE=BE②如图5中,当点F在AB的延长线上时,点G在线段OC上,连接EF.∵AF=AG,BF=2OG,∴AF=AG=k,BF=2a,∴AB=k﹣2a,AC=2(k﹣a),∴AD2=AC2﹣CD2=[2(k﹣a)]2﹣(k﹣2a)2=3k2﹣4ka,∵∠ABE=∠DAF=90°,∠BAE=∠ADF,∴△ABE∽△DAF,∴BEAF=AB∴BEk-2a∴BE=k(k-2a)由题意:10×12×2a×k(k-2a)AD=∴AD2=10ka,即10ka=3k2﹣4ka,∴k=143∴AD=2105∴BE=k(k-2a)AD=810545∴tan∠BAE=BE综上所述,tan∠BAE的值为55或10544.【解答】解:【思考】四边形ABDE是平行四边形.证明:∵△ABC≌△DEF,∴AB=DE,∠BAC=∠EDF,∴AB∥DE,∴四边形ABDE是平行四边形;【发现】如图1,连接BE交AD于点O,∵四边形ABDE为矩形,∴OA=OD=OB=OE,设AF=x(cm),则OA=OE=12(∴OF=OA﹣AF=2-12在Rt△OFE中,∵OF2+EF2=OE2,∴(2-1解得:x=9∴AF=94【探究】BD=2OF,证明:如图2,延长OF交AE于点H,由矩形的性质及旋转的性质知:OA=OB=OE=OD,∴∠OAB=∠OBA=∠ODE=∠OED,∴∠OBD=∠ODB,∠OAE=∠OEA,∴∠BDE+∠DEA=∠ABD+∠EAB,∵∠ABD+∠BDE+∠DEA+∠EAB=360°,∴∠ABD+∠BAE=180°,∴AE∥BD,∴∠OHE=∠ODB,∵EF平分∠OEH,∴∠OEF=∠HEF,∵∠EFO=∠EFH=90°,EF=EF,∴△EFO≌△EFH(ASA),∴EO=EH,FO=FH,∴∠EHO=∠EOH=∠OBD=∠ODB,∴△EOH≌△OBD(AAS),∴BD=OH=2OF.45.【解答】解:(1)如图1中,过点C′作C′H⊥OF于H.∵∠HC′O=∠C'OC=α=30°,∴C′H=C′O•cos30°=23,∴点C′到直线OF的距离为23.(2)①如图2中,当C′P∥OF时,过点C′作C′M⊥OF于M.∵C′P∥OF,∴∠O=180°﹣∠OC′P=45°,∴△OC′M是等腰直角三角形,∵OC′=4,∴C′M=22,∴点C′到直线DE的距离为22-如图3中,当C′P∥DG时,过点C′作C′N⊥FG于N.同法可证△OC′N是等腰直角三角形,∴C′N=22,∴点C′到直线DE的距离为22+②设d为所求的距离.第一种情形:如图4中,当点A′落在DE上时,连接OA′,延长ED交OC于M.∵OA′=25,OM=2,∠OMA′=90°,∴A′M=A'∴A′D=2,即d=2,如图5中,当点P落在DE上时,连接OP,过点P作PQ⊥C′B′于Q.∵PQ=1,OQ=5,∴OP=5∴PM=26-4∴PD=22∴d=22∴2≤d≤22第二种情形:当A′P与FG相交,不与EF相交时,当点A′在FG上时,A′G=25-2,即d=25如图6中,当点P落在EF上时,设OF交A′B′于Q,过点P作PT⊥B′C′于T,过点P作PR∥OQ交OB′于R,连接OP.∵OP=26,OF∴FP=O∵OP=OP,PF=PT,∠F=∠PTO=90°,∴Rt△OPF≌Rt△OPT(HL),∴∠FOP=∠TOP,∵PR∥OQ,∴∠OPR=∠POF,∴∠OPR=∠POR,∴OR=PR,∵PT2+TR2=PR2,∴12+(5﹣PR)2=PR2,∴PR=2.6,RT=2.4,∵△B′PR∽△B′QO,∴B'RB'O∴3.46∴OQ=78∴QG=OQ﹣OG=4417,即∴25-2≤d<第三种情形:当A′P经过点F时,如图7中,显然d=3.综上所述,2≤d≤22-2或46.【解答】解:(1)DE与BF的位置关系为:DE∥BF,理由如下:如图1所示:∵∠A=∠C=90°,∴∠ADC+∠ABC=360°﹣(∠A+∠C)=180°,∵DE、BF分别平分∠ADC、∠ABC,∴∠ADE=12∠ADC,∠ABF=1∴∠ADE+∠ABF=1∵∠ADE+∠AED=90°,∴∠AED=∠ABF,∴DE∥BF;(2)令x=0,得y=12,∴DE=12,令y=0,得x=10,∴MN=10,把y=245代入y=-解得:x=6,即NQ=6,∴QM=10﹣6=4,∵Q是BF中点,∴FQ=QB,∵BM=2FN,∴FN+6=4+2FN,解得:FN=2,∴BM=4,∴BF=FN+MN+MB=16;(3)①连接EM并延长交BC于点H,如图2所示:∵FM=2+10=12=DE,DE∥BF,∴四边形DFME是平行四边形,∴DF=EM,EH∥CD,∴∠MHB=∠C=90°,∵AD=6,DE=12,∠A=90°,∴∠DEA=30°,∴∠DEA=∠FBE=∠FBC=30°,∴∠ADE=60°,∴∠ADE=∠CDE=∠FME=60°,∴∠DFM=∠DEM=120°,∴∠MEB=180°﹣120°﹣30°=30°,∴∠MEB=∠FBE=30°,∴∠EHB=180°﹣30°﹣30°﹣30°=90°,DF=EM=BM=4,∴MH=12∴EH=4+2=6,由勾股定理得:HB=BM2∴BE=EH2当DP=DF时,-65解得:x=20∴BQ=14﹣x=14-20∵223>4∴BQ>BE;②(Ⅰ)当PQ经过点D时,如图3所示:y=0,则x=10;(Ⅱ)当PQ经过点C时,如图4所示:∵BF=16,∠FCB=90°,∠CBF=30°,∴CF=12∴CD=8+4=12,∵FQ∥DP,∴△CFQ∽△CDP,∴FQDP∴2+x-解得:x=10(Ⅲ)当PQ经过点A时,如图5所示:∵PE∥BQ,∴△APE∽△AQB,∴PEBQ由勾股定理得:AE=DE2∴AB=63+43=10∴12-(-6解得:x=14由图可知,PQ不可能过点B;综上所述,当x=10或x=103或x=143时,47.【解答】(1)解:如图1中,∵PN∥BC,∴△APN∽△ABC,∴PNBC=AE解得PN=(2)能画出这样的正方形,如图2中,正方形PNMQ即为所求.(3)证明:如图2中,由画图可知:∠QMN=∠PQM=∠NPQ=∠BM′N′=90°,∴四边形PNMQ是矩形,MN∥M′N′,∴△BN′M′∽△BN
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第二章 地球的面貌整章教学设计2023-2024学年湘教版地理七年级上册
- 2025年电力调度与管理自动化系统合作协议书
- 非晶电感磁芯生产项目可行性研究报告模板-备案拿地
- 养老产业合作协议书(2篇)
- 广东省广州市2025届普通高中毕业班综合测试(二)英语试题(含答案)
- 2025年酸碱平衡调节药项目合作计划书
- 微球型聚焦测井仪企业县域市场拓展与下沉战略研究报告
- 大型起重船企业县域市场拓展与下沉战略研究报告
- 运动场地草坪维护服务企业县域市场拓展与下沉战略研究报告
- 中小I型钢(小工字钢)企业数字化转型与智慧升级战略研究报告
- 教科版四年级下册科学全册教案
- 园林史课件-第7讲-中国园林的成熟期(元明清初)和成熟后期(清中、末)-私家园林
- 商业摄影课件
- 第十套广播体操教案
- 南京传媒学院新闻传播学院招聘网络与新媒体教师模拟备考预测(自我提高共1000题含答案解析)检测试卷
- GB/T 629-1997化学试剂氢氧化钠
- 焦化厂生产工序及工艺流程图
- optimact540技术参考手册
- 第一章电力系统仿真软件介绍课件
- 产品QC工程图 (质量保证工程图)Excel表格
- 电气平行检验用表
评论
0/150
提交评论