版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.为了解圭峰会城九年级女生身高情况,随机抽取了圭峰会城九年级100名女生,她们的身高x(cm)统计如下:组别(cm)x<150150≤x<155155≤x<160160≤x<165x≥165频数22352185根据以上结果,随机抽查圭峰会城九年级1名女生,身高不低于155cm的概率是()A.0.25 B.0.52 C.0.70 D.0.752.甲、乙两人参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为()A. B. C. D.3.如图,正比例函数的图像与反比例函数的图象相交于A、B两点,其中点A的横坐标为2,当时,x的取值范围是()A.x<-2或x>2 B.x<-2或0<x<2C.-2<x<0或0<x<2 D.-2<x<0或x>24.函数与函数在同一坐标系中的大致图象是()A. B. C. D.5.如图,⊙O是直角△ABC的内切圆,点D,E,F为切点,点P是上任意一点(不与点E,D重合),则∠EPD=()A.30° B.45° C.60° D.75°6.如图,点是的边上的一点,若添加一个条件,使与相似,则下列所添加的条件错误的是()A. B. C. D.7.在如图所示的网格纸中,有A、B两个格点,试取格点C,使得△ABC是等腰三角形,则这样的格点C的个数是()A.4 B.6 C.8 D.108.若关于x的一元二次方程有两个不相等的实数根,那么k的取值范围是()A.k≠0 B.k>4 C.k<4 D.k<4且k≠09.已知关于x的一元二次方程有一个根为,则a的值为()A.0 B. C.1 D.10.在同一直角坐标系中,函数y=mx+m和函数y=mx2+2x+2(m是常数,且m≠0)的图象可能是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,等腰直角△ABC中,AC=BC,∠ACB=90°,点O分斜边AB为BO:OA=1:,将△BOC绕C点顺时针方向旋转到△AQC的位置,则∠AQC=.12.如图,平面直角坐标系中,已知O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,测第70次旋转结束时,点D的坐标为_____.13.某一时刻,测得身高1.6的同学在阳光下的影长为2.8,同时测得教学楼在阳光下的影长为25.2,则教学楼的高为__________.14.在中,,,则______________.15.若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是_____.16.如图,在△ABC中,∠C=90°,∠A=α,AC=20,请用含α的式子表示BC的长___________.17.把抛物线向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是__________.18.若关于x的一元二次方程x22x+m=0有实数根,则实数m的取值范围是______.三、解答题(共66分)19.(10分)已知:如图,一次函数与反比例函数的图象有两个交点和,过点作轴,垂足为点;过点作轴,垂足为点,且,连接.(1)求,,的值;(2)求四边形的面积.20.(6分)解方程:2x2﹣5x﹣7=1.21.(6分)已知二次函数.求证:不论为何实数,此二次函数的图像与轴都有两个不同交点.22.(8分)如图,反比例函数y=(x>0)和一次函数y=mx+n的图象过格点(网格线的交点)B、P.(1)求反比例函数和一次函数的解析式;(2)观察图象,直接写出一次函数值大于反比例函数值时x的取值范围是:.(3)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.23.(8分)如图,反比例函数的图象经过点,直线与双曲线交于另一点,作轴于点,轴于点,连接.(1)求的值;(2)若,求直线的解析式;(3)若,其它条件不变,直接写出与的位置关系.24.(8分)如图1,的直径,点为线段上一动点,过点作的垂线交于点,,连结,.设的长为,的面积为.小东根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.下面是小东的探究过程,请帮助小东完成下面的问题.(1)通过对图1的研究、分析与计算,得到了与的几组对应值,如下表:00.511.522.533.5400.71.72.94.85.24.60请求出表中小东漏填的数;(2)如图2,建立平面直角坐标系,描出表中各对应值为坐标的点,画出该函数的大致图象;(3)结合画出的函数图象,当的面积为时,求出的长.25.(10分)如图,半圆O的直径AB=10,将半圆O绕点B顺时针旋转45°得到半圆O′,与AB交于点P,求AP的长.26.(10分)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.(1)按约定,“小李同学在该天早餐得到两个油饼”是事件;(可能,必然,不可能)(2)请用列表或树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.
参考答案一、选择题(每小题3分,共30分)1、D【分析】直接利用不低于155cm的频数除以总数得出答案.【详解】∵身高不低于155cm的有52+18+5=1(人),∴随机抽查圭峰会城九年级1名女生,身高不低于155cm的概率是:=0.1.故选:D.【点睛】本题考查了概率公式,正确应用概率公式是解题关键.2、B【解析】试题解析:可能出现的结果小明打扫社区卫生打扫社区卫生参加社会调查参加社会调查小华打扫社区卫生参加社会调查参加社会调查打扫社区卫生由上表可知,可能的结果共有种,且都是等可能的,其中两人同时选择“参加社会调查”的结果有种,则所求概率故选B.点睛:求概率可以用列表法或者画树状图的方法.3、D【分析】先根据反比例函数与正比例函数的性质求出B点坐标,再由函数图象即可得出结论.【详解】解:∵反比例函数与正比例函数的图象均关于原点对称,
∴A、B两点关于原点对称,
∵点A的横坐标为1,∴点B的横坐标为-1,
∵由函数图象可知,当-1<x<0或x>1时函数y1=k1x的图象在的上方,
∴当y1>y1时,x的取值范围是-1<x<0或x>1.
故选:D.【点睛】本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y1>y1时x的取值范围是解答此题的关键.4、B【分析】根据函数与函数分别确定图象即可得出答案.【详解】∵,-2<0,∴图象经过二、四象限,∵函数中系数小于0,∴图象在一、三象限.故选:B.【点睛】此题主要考查了从图象上把握有用的条件,准确确定图象位置,正确记忆一次函数与反比例函数的区别是解决问题的关键.5、B【分析】连接OE,OD,由切线的性质易证四边形OECD是矩形,则可得到∠EOD的度数,由圆周角定理进而可求出∠EPD的度数.【详解】解:连接OE,OD,∵⊙O是直角△ABC的内切圆,点D,E,F为切点,∴OE⊥BC,OD⊥AC,∴∠C=∠OEC=∠ODC=90°,∴四边形OECD是矩形,∴∠EOD=90°,∴∠EPD=∠EOD=45°,故选:B.【点睛】此题主要考查了圆周角定理以及切线的性质等知识,得出∠EOD=90°是解题关键.6、D【分析】在与中,已知有一对公共角∠B,只需再添加一组对应角相等,或夹已知等角的两组对应边成比例,即可判断正误.【详解】A.已知∠B=∠B,若,则可以证明两三角形相似,正确,不符合题意;B.已知∠B=∠B,若,则可以证明两三角形相似,正确,不符合题意;C.已知∠B=∠B,若,则可以证明两三角形相似,正确,不符合题意;D.若,但夹的角不是公共等角∠B,则不能证明两三角形相似,错误,符合题意,故选:D.【点睛】本题考查相似三角形的判定,熟练掌握相似三角形的判定条件是解答的关键.7、C【分析】分AB是腰长时,根据网格结构,找出一个小正方形与A、B顶点相对的顶点,连接即可得到等腰三角形,AB是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,AB垂直平分线上的格点都可以作为点C,然后相加即可得解.【详解】解:如图,分情况讨论:①AB为等腰△ABC的底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选C.【点睛】本题考查等腰三角形的判定,解题的关键是掌握等腰三角形的判定,分情况讨论解决.8、C【解析】根据判别式的意义得到△=(-1)2-1k>0,然后解不等式即可.【详解】∵关于x的一元二次方程有两个不相等的实数根,
∴解得:k<1.
故答案为:C.【点睛】本题考查的知识点是一元二次方程根的情况与判别式△的关系,解题关键是熟记一元二次方程根的情况与判别式△的关系:(1)△>0方程有两个不相等的实数根;(2)△=0方程有两个相等的实数根;(3)△<0方程没有实数根.9、D【分析】根据一元二次方程的定义,再将代入原式,即可得到答案.【详解】解:∵关于x的一元二次方程有一个根为,∴,,则a的值为:.故选D.【点睛】本题考查一元二次方程,解题的关键是熟练掌握一元二次方程的定义.10、D【分析】关键是m的正负的确定,对于二次函数y=ax2+bx+c,当a>0时,开口向上;当a<0时,开口向下.对称轴为x=−,与y轴的交点坐标为(0,c).【详解】A.由函数y=mx+m的图象可知m<0,即函数y=mx2+2x+2开口方向朝下,对称轴为x=−>0,则对称轴应在y轴右侧,与图象不符,故A选项错误;
B.由函数y=mx+m的图象可知m<0,即函数y=mx2+2x+2开口方向朝下,开口方向朝下,与图象不符,故B选项错误;
C.由函数y=mx+m的图象可知m>0,即函数y=mx2+2x+2开口方向朝上,对称轴为x=−<0,则对称轴应在y轴左侧,与图象不符,故C选项错误;
D.由函数y=mx+m的图象可知m<0,即函数y=mx2+2x+2开口方向朝下,对称轴为x=−>0,则对称轴应在y轴右侧,与图象相符,故D选项正确.
故选D.【点睛】此题考查一次函数和二次函数的图象性质,解题关键在于要掌握它们的性质才能灵活解题.二、填空题(每小题3分,共24分)11、105°.【分析】连接OQ,由旋转的性质可知:△AQC≌△BOC,从而推出∠OAQ=90°,∠OCQ=90°,再根据特殊直角三角形边的关系,分别求出∠AQO与∠OQC的值,可求出结果.【详解】连接OQ,∵AC=BC,∠ACB=90°,∴∠BAC=∠B=45°,由旋转的性质可知:△AQC≌△BOC,∴AQ=BO,CQ=CO,∠QAC=∠B=45°,∠ACQ=∠BCO,∴∠OAQ=∠BAC+∠CAQ=90°,∠OCQ=∠OCA+∠ACQ=∠OCA+∠BCO=90°,∴∠OQC=45°,∵BO:OA=1:,设BO=1,OA=,∴AQ=1,则tan∠AQO==,∴∠AQO=60°,∴∠AQC=105°.故答案为105°.12、(3,﹣10)【分析】首先根据坐标求出正方形的边长为6,进而得到D点坐标,然后根据每旋转4次一个循环,可知第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90°,即可得出此时D点坐标.【详解】解:∵A(﹣3,4),B(3,4),∴AB=3+3=6,∵四边形ABCD为正方形,∴AD=AB=6,∴D(﹣3,10),∵70=4×17+2,∴每4次一个循环,第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90°,此时D点与(﹣3,10)关于原点对称,∴此时点D的坐标为(3,﹣10).故答案为:(3,﹣10).【点睛】本题考查坐标与图形,根据坐标求出D点坐标,并根据旋转特点找出规律是解题的关键.13、11.1【分析】根据题意可知,,代入数据可得出答案.【详解】解:由题意得出:,即,解得,教学楼高=11.1.故答案为:11.1.【点睛】本题考查的知识点是相似三角形的应用以及平行投影,熟记同一时刻物高与影长成正比是解此题的关键.14、【分析】根据sinA=,可得出的度数,并得出的度数,继而可得的值.【详解】在Rt△ABC中,,∵,∴∴∴=.故答案为:.【点睛】本题考查了特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键.15、k≤5且k≠1.【解析】试题解析:∵一元二次方程(k﹣1)x2+4x+1=0有实数根,∴k﹣1≠0,且b2﹣4ac=16﹣4(k﹣1)≥0,解得:k≤5且k≠1.考点:根的判别式.16、【分析】在直角三角形中,角的正切值等于其对边与邻边的比值,据此求解即可.【详解】在Rt△ABC中,∵∠A=α,AC=20,∴=,即BC=.故答案为:.【点睛】本题主要考查了三角函数解直角三角形,熟练掌握相关概念是解题关键.17、【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是即故答案为:.【点睛】本题主要考查二次函数的平移,掌握平移规律“左加右减,上加下减”是解题的关键.18、m≤1【分析】利用判别式的意义得到,然后解不等式即可.【详解】解:根据题意得,
解得.
故答案为:.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.三、解答题(共66分)19、(1),,.(2)6【解析】(1)用代入法可求解,用待定系数法求解;(2)延长,交于点,则.根据求解.【详解】解:(1)∵点在上,∴,∵点在上,且,∴.∵过,两点,∴,解得,∴,,.(2)如图,延长,交于点,则.∵轴,轴,∴,,∴,,∴.∴四边形的面积为6.【点睛】考核知识点:反比例函数和一次函数的综合运用.数形结合分析问题是关键.20、x2=,x2=﹣2.【分析】把方程左边进行因式分解(2x﹣7)(x+2)=2,方程就可化为两个一元一次方程2x﹣7=2或x+2=2,解两个一元一次方程即可.【详解】解:2x2﹣5x﹣7=2,∴(2x﹣7)(x+2)=2,∴2x﹣7=2或x+2=2,∴x2=,x2=﹣2.【点睛】本题主要考查了解一元二次方程,正确使用因式分解法解一元二次方程是解答本题的关键.21、见解析【分析】利用判别式的值得到,从而得到,然后根据判别式的意义得到结论.【详解】解:,不论为何值时,都有,此时二次函数图象与轴有两个不同交点.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程;决定抛物线与x轴的交点个数.22、(1)y=,y=﹣+3;(2)2<x<1;(3)见解析【分析】(1)利用待定系数法即可求出反比例函数和一次函数的解析式;(2)根据图象即可求得;(3)根据矩形满足的两个条件画出符合要求的两个矩形即可.【详解】(1)∵反比例函数y=(x>0)的图象过格点P(2,2),∴k=2×2=1,∴反比例函数的解析式为y=,∵一次函数y=mx+n的图象过格点P(2,2),B(1,1),∴,解得,∴一次函数的解析式为y=﹣+3;(2)一次函数值大于反比例函数值时x的取值范围是2<x<1,故答案为2<x<1.(3)如图所示:矩形OAPE、矩形ODFP即为所求作的图形.【点睛】此题是一道综合题,考查待定系数法求函数解析式、矩形的性质,(3)中画矩形时把握矩形特点即可正确解答.23、(1);
(2);(3)
BC∥AD.【分析】(1)将点A(-4,1)代入,求的值;(2)作辅助线如下图,根据和CH=AE,点D的纵坐标,代入方程求出点D的坐标,假设直线的解析式,代入A、D两点即可;(3)代入B(0,1),C(2,0)求出直线BC的解析式,再与直线AB的解析式作比较,得证BC∥AD.【详解】(1)∵反比例函数的图象经过点A(-4,1),∴(2)
如图,∵
∴∴DH=3∵CH
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度企业销售培训劳动合同范本(2024版)
- 人教版小学语文六年级上册教案全册教案
- 2024年度电气设备防雷保护系统升级改造合同
- 《上期期末家长会》课件
- 2024年度大型货车租赁安全管理合同2篇
- 2024中国移动福建公司招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国电建集团昆明勘测设计研究院限公司招聘100人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国电信北京公司招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国交建招聘中交天航滨海公司专业人才71人易考易错模拟试题(共500题)试卷后附参考答案
- 2024东海航空深圳宝安区宝安机场招聘效益支持专员(广东)易考易错模拟试题(共500题)试卷后附参考答案
- 北师大版(2019)高中英语必修第三册单词表默写练习(英译中、中译英)
- 2023铁矿石 钍含量的测定偶氮胂Ⅲ分光光度法
- 政策理论中的倡导联盟框架及其应用
- 人工湖清理淤泥施工方案
- 辽宁省大连市甘井子区2023-2024学年七年级上学期期中考试语文试题
- (17.6)-第五讲 马克思主义的鲜明特征
- 当幸福来敲门电影介绍PPT模板
- 军事理论考试卷
- 过敏性紫癜护理查房范本
- 40万豪华装修清单
- 历史教研活动总结美篇 历史教研活动小结(10篇)
评论
0/150
提交评论