广东省揭阳市榕城区空港经济区2022-2023学年数学九年级第一学期期末达标检测模拟试题含解析_第1页
广东省揭阳市榕城区空港经济区2022-2023学年数学九年级第一学期期末达标检测模拟试题含解析_第2页
广东省揭阳市榕城区空港经济区2022-2023学年数学九年级第一学期期末达标检测模拟试题含解析_第3页
广东省揭阳市榕城区空港经济区2022-2023学年数学九年级第一学期期末达标检测模拟试题含解析_第4页
广东省揭阳市榕城区空港经济区2022-2023学年数学九年级第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,已知四边形ABCD内接于⊙O,AB是⊙O的直径,EC与⊙O相切于点C,∠ECB=35°,则∠D的度数是()A.145° B.125° C.90° D.80°2.下列一元二次方程中,没有实数根的是()A. B.C. D.3.如图,铁道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,长臂端点升高()A.5m B.6m C.7m D.8m4.方程的根是()A. B. C., D.,5.如图,在中,中线相交于点,连接,则的值是()A. B. C. D.6.在Rt△ABC中,∠C=900,∠B=2∠A,则cosB等于()A. B. C. D.7.如图,正方形ABCD中,AD=6,E为AB的中点,将△ADE沿DE翻折得到△FDE,延长EF交BC于G,FH⊥BC,垂足为H,延长DF交BC与点M,连接BF、DG.以下结论:①∠BFD+∠ADE=180°;②△BFM为等腰三角形;③△FHB∽△EAD;④BE=2FM⑤S△BFG=2.6⑥sin∠EGB=;其中正确的个数是()A.3 B.4 C.5 D.68.如图,在ABC中,点D为BC边上的一点,且AD=AB=5,AD⊥AB于点A,过点D作DE⊥AD,DE交AC于点E,若DE=2,则ADC的面积为()A. B.4 C. D.9.某校办工厂生产的某种产品,今年产量为200件,计划通过改革技术,使今后两年的产量都比前一年增长一个相同的百分数,使得三年的总产量达到1400件.若设这个百分数为,则可列方程()A. B.C. D.10.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为(

)A. B. C. D.二、填空题(每小题3分,共24分)11.下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程.已知:直线和直线外一点.求作:直线的垂线,使它经过.作法:如图2.(1)在直线上取一点,连接;(2)分别以点和点为圆心,大于的长为半径作弧,两弧相交于,两点,连接交于点;(3)以点为圆心,为半径作圆,交直线于点(异于点),作直线.所以直线就是所求作的垂线.请你写出上述作垂线的依据:______.12.某数学兴趣小组想测量一棵树的高度,在阳光下,一名同学测得一根长为1m的竹竿的影长为0.5m,同时另一名同学测量一棵树的高度时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上,其中,落在墙壁上的影长为0.8m,落在地面上的影长为4.4m,则树的高为_______m.13.一个不透明的布袋里装有2个红球,4个白球和a个黄球,这些球除颜色外其余都相同,若从该布袋里任意摸出1个球是黄球的概率为0.4,则a=_____.14.把抛物线的图像向右平移个单位,再向下平移个单位,所得图像的解析式为,则的值为___________.15.一天早上,王霞从家出发步行上学,出发6分钟后王霞想起数学作业没有带,王霞立即打电话叫爸爸骑自行车把作业送来(接打电话和爸爸出门的时间忽略不计),同时王霞把速度降低到前面的一半.爸爸骑自行车追上王霞后立即掉头以原速赶往位于家的另一边的单位上班,王霞拿到作业后立即改为慢跑上学,慢跑的速度是最开始步行速度的2倍,最后王霞比爸爸早10分钟到达目的地.如图反映了王霞与爸爸之间的距离(米)与王霞出发后时间(分钟)之间的关系,则王霞的家距离学校有__________米.16.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,则m+n=_____.17.如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,在飞行过程中,当小球的行高度为15m时,则飞行时间是_____.18.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD=______度.三、解答题(共66分)19.(10分)如图,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象有公共点A(1,a)、D(﹣2,﹣1).直线l与x轴垂直于点N(3,0),与一次函数和反比例函数的图象分别交于点B、C.(1)求一次函数与反比例函数的解析式;(2)根据图象回答,x在什么范围内,一次函数的值大于反比例函数的值;(3)求△ABC的面积.20.(6分)为了加强学校的体育活动,某学校计划购进甲、乙两种篮球,根据市场调研发现,如果购进甲篮球2个和乙篮球3个共需270元;购进甲篮球3个和乙篮球2个共需230元.(1)求甲、乙两种篮球每个的售价分别是多少元?(2)为满足开展体育活动的需求,学校计划购进甲、乙两种篮球共100个,由于购货量大,和商场协商,商场决定甲篮球以九折出售,乙篮球以八折出售,学校要求甲种篮球的数量不少于乙种篮球数量的4倍,甲种篮球的数量不多于90个,请你求出学校花最少钱的进货方案;(3)学校又拿出省下的290元购买跳绳和毽子两种体育器材,跳绳10元一根,毽子5元一个,在把钱用尽的情况下,有多少种进货方案?21.(6分)已知:如图,抛物线与轴交于点,,与轴交于点.(1)求抛物线的解析式;(2)如图,点是线段上方抛物线上的一个动点,连结、.设的面积为.点的横坐标为.①试求关于的函数关系式;②请说明当点运动到什么位置时,的面积有最大值?③过点作轴的垂线,交线段于点,再过点做轴交抛物线于点,连结,请问是否存在点使为等腰直角三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.22.(8分)如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1),B(4,0),C(4,4).(1)按下列要求作图:①将△ABC向左平移4个单位,得到△A1B1C1;②将△A1B1C1绕点B1逆时针旋转90°,得到△A1B1C1.(1)求点C1在旋转过程中所经过的路径长.23.(8分)如图,已知点在反比例函数的图像上.(1)求a的值;(2)如果直线y=x+b也经过点A,且与x轴交于点C,连接AO,求的面积.24.(8分)初中生对待学习的态度一直是教育工作者关注的问题之一.为此某市教育局对该市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该市近20000名初中生中大约有多少名学生学习态度达标(达标包括A级和B级)?25.(10分)已知关于x的一元二次方程mx2+2mx+m﹣4=0;(1)若该方程没有实数根,求m的取值范围.(2)怎样平移函数y=mx2+2mx+m﹣4的图象,可以得到函数y=mx2的图象?26.(10分)如图,在平面直角坐标中,反比例函数的图象经过点,反比例函数的图象经过点,作直线分别交于两点,已知.(1)求反比例函数的解析式;(2)求的面积.

参考答案一、选择题(每小题3分,共30分)1、B【解析】试题解析:连接∵EC与相切,故选B.点睛:圆内接四边形的对角互补.2、A【解析】试题分析:A.∵△=25﹣4×2×4=﹣7<0,∴方程没有实数根,故本选项正确;B.∵△=36﹣4×1×4=0,∴方程有两个相等的实数根,故本选项错误;C.∵△=16﹣4×5×(﹣1)=36>0,∴方程有两个相等的实数根,故本选项错误;D.∵△=16﹣4×1×3=4>0,∴方程有两个相等的实数根,故本选项错误;故选A.考点:根的判别式.3、D【分析】栏杆长短臂在升降过程中,将形成两个相似三角形,利用对应变成比例解题.【详解】解:设长臂端点升高x米,则,经检验,x=1是原方程的解,∴x=1.故选D.4、D【分析】先移项然后通过因式分解法解一元二次方程即可.【详解】或故选:D.【点睛】本题主要考查因式分解法解一元二次方程,掌握因式分解法是解题的关键.5、B【分析】BE、CD是△ABC的中线,可知DE是△ABC的中位线,于是有DE∥BC,△ODE∽△OCB,根据相似三角形的性质即可判断.【详解】解:∵BE、CD是△ABC的中线,∴DE是△ABC的中位线,

∴DE∥BC,DE=BC,

∴△DOE∽△COB,∴,故选:B.【点睛】本题考查了三角形的中位线定理,相似三角形的判定与性质,证明△ODE和△OBC相似是关键.6、B【详解】解:∵∠C=90°,∴∠A+∠B=90°,∵∠B=2∠A,∴∠A+2∠A=90°,∴∠A=30°,∴∠B=60°,∴cosB=故选B【点睛】本题考查三角函数值,熟记特殊角三角函数值是解题关键.7、C【分析】根据正方形的性质、折叠的性质、三角形外角的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理对各个选项依次进行判断、计算,即可得出答案.【详解】解:正方形ABCD中,,E为AB的中点,,,,

沿DE翻折得到,

,,,,

,,

又,

,∴,又∵,,∴∠BFD+∠ADE=180°,故①正确;∵,,∴又∵,,∴,∴MB=MF,∴△BFM为等腰三角形;故②正确;,,

∴,∴,又∵,∴,∵,,∴,

∽,故正确;

,,,

∵在和中,,

≌,,

设,则,,

在中,由勾股定理得:,

解得:,∴EG=5,,,∴sin∠EGB=,故⑥正确;

∵,,,∴,又∵,∴∽,∴∴BE=2FM,故④正确;∽,且,设,则,

在中,由勾股定理得:,

解得:舍去或,

,故错误;故正确的个数有5个,故选:C.【点睛】本题主要考查了正方形的性质、折叠的性质、全等三角形的判定与性质、相似三角形的判定与性质、平行线的判定、勾股定理、三角函数等知识,本题综合性较强,证明三角形全等和三角形相似是解题的关键.8、D【分析】根据题意得出AB∥DE,得△CED∽△CAB,利用对应边成比例求CD长度,再根据等腰直角三角形求出底边上的高,利用面积公式计算即可.【详解】解:如图,过A作AF⊥BC,垂足为F,∵AD⊥AB,∴∠BAD=90°在Rt△ABD中,由勾股定理得,BD=,∵AF⊥BD,∴AF=.∵AD⊥AB,DE⊥AD,∴∠BAD=∠ADE=90°,∴AB∥DE,∴∠CDE=∠B,∠CED=∠CAB,∴△CDE∽△CBA,∴,∴,∴CD=,∴S△ADC=.故选:D【点睛】本题考查相似三角形的性质与判定及等腰直角三角形的性质,利用相似三角形的对应边成比例求线段长是解答此题的关键.9、B【分析】根据题意:第一年的产量+第二年的产量+第三年的产量=1且今后两年的产量都比前一年增长一个相同的百分数x.【详解】解:已设这个百分数为x.200+200(1+x)+200(1+x)2=1.故选B.【点睛】本题考查对增长率问题的掌握情况,理解题意后以三年的总产量做等量关系可列出方程.10、D【解析】一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案.【详解】根据题意:从袋中任意摸出一个球,是白球的概率为==.故答案为D【点睛】此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.二、填空题(每小题3分,共24分)11、直径所对的圆周角是直角【分析】由题意知点E在以PA为直径的圆上,根据“直径所对的圆周角是直角”可得∠PEA=90°,即PE⊥直线a.【详解】由作图知,点E在以PA为直径的圆上,所以∠PEA=90°,则PE⊥直线a,所以该尺规作图的依据是:直径所对的圆周角是直角,故答案为:直径所对的圆周角是直角.【点睛】本题主要考查作图−尺规作图,解题的关键是掌握线段中垂线的尺规作图及其性质和直径所对的圆周角是直角.12、9.2【分析】由题意可知在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.经过树在教学楼上的影子的顶端作树的垂线和经过树顶的太阳光线以及树所成三角形,与竹竿,影子光线形成的三角形相似,这样就可求出垂足到树的顶端的高度,再加上墙上的影高就是树高.【详解】解:设从墙上的影子的顶端到树的顶端的垂直高度是x米.则有,解得x=1.1.树高是1.1+0.1=9.2(米).故答案为:9.2.【点睛】本题考查相似三角形的应用,解题的关键是从复杂的数学问题中整理出三角形并利用相似三角形求解.13、1【解析】根据黄球个数÷总球的个数=黄球的概率,列出算式,求出a的值即可.【详解】根据题意得:=0.1,解得:a=1,经检验,a=1是原分式方程的解,则a=1;故答案为1.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14、【分析】根据抛物线的平移规律:左加右减,上加下减,得出平移后的抛物线解析式,化为一般形式即可得解.【详解】由题意,得平移后的抛物线为:即∴故答案为:4.【点睛】此题主要考查根据抛物线的平移规律求参数,熟练掌握,即可解题.15、1750【分析】设王霞出发时步行速度为a米/分钟,爸爸骑车速度为b米/分钟,根据爸爸追上王霞的时间可以算出两者速度关系,然后利用学校和单位之间距离4750建立方程求出a,即可算出家到学校的距离.【详解】设王霞出发时步行速度为a米/分钟,爸爸骑车速度为b米/分钟,由图像可知9分钟时爸爸追上王霞,则,整理得由图像可知24分钟时,爸爸到达单位,∵最后王霞比爸爸早10分钟到达目的地∴王霞在第14分钟到达学校,即拿到作业后用时14-9=5分钟到达学校爸爸骑车用时24-9=15分钟到达单位,单位与学校相距4750米,∴将代入可得,解得∴王霞的家与学校的距离为米故答案为:1750.【点睛】本题考查函数图像信息问题,解题的关键是读懂图像中数据的含义,求出王霞的速度.16、-1【分析】根据根与系数的关系得出-2+4=-m,-2×4=n,再求出m+n的值即可.【详解】解:∵关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=-2,x2=4,

∴-2+4=-m,-2×4=n,

解得:m=-2,n=-8,

∴m+n=-1,

故答案为:-1.【点睛】本题考查了根与系数的关系的应用,能根据根与系数的关系得出-2+4=-m,-2×4=n是解此题的关键.17、1s或3s【解析】根据题意可以得到15=﹣5x2+20x,然后求出x的值,即可解答本题.【详解】∵y=﹣5x2+20x,∴当y=15时,15=﹣5x2+20x,得x1=1,x2=3,故答案为1s或3s.【点睛】本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,利用二次函数的性质和一元二次方程的知识解答.18、80【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【详解】解:∵BC是⊙O的切线,

∴∠ABC=90°,

∴∠A=90°-∠ACB=40°,

由圆周角定理得,∠BOD=2∠A=80°.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.三、解答题(共66分)19、(1)反比例函数的解析式为:y=,一次函数的解析式为:y=x+1;(2)当﹣2<x<0或x>1时,一次函数的值大于反比例函数的值;(3)S△ABC=.【解析】试题分析:(1)由反比例函数经过点D(﹣2,﹣1),即可求得反比例函数的解析式;然后求得点A的坐标,再利用待定系数法求得一次函数的解析式;(2)结合图象求解即可求得x在什么范围内,一次函数的值大于反比例函数的值;(3)首先过点A作AE⊥x轴交x轴于点E,由直线l与x轴垂直于点N(3,0),可求得点E,B,C的坐标,继而求得答案.试题解析:(1)∵反比例函数经过点D(﹣2,﹣1),∴把点D代入y=(m≠0),∴﹣1=,∴m=2,∴反比例函数的解析式为:y=,∵点A(1,a)在反比例函数上,∴把A代入y=,得到a==2,∴A(1,2),∵一次函数经过A(1,2)、D(﹣2,﹣1),∴把A、D代入y=kx+b(k≠0),得到:,解得:,∴一次函数的解析式为:y=x+1;(2)如图:当﹣2<x<0或x>1时,一次函数的值大于反比例函数的值;(3)过点A作AE⊥x轴交x轴于点E,∵直线l⊥x轴,N(3,0),∴设B(3,p),C(3,q),∵点B在一次函数上,∴p=3+1=4,∵点C在反比例函数上,∴q=,∴S△ABC=BC•EN=×(4﹣)×(3﹣1)=.【点睛】本题考查了一次函数与反比例函数的交点问题,掌握待定系数法求函数解析式是解题的关键.20、(1)甲种篮球每个的售价为30元,乙种篮球每个的售价为70元;(2)花最少钱的进货方案为购进甲种篮球90个,乙种篮球10个;(3)有28种进货方案.【分析】(1)根据题意可以列出相应的方程组,从而可以解答本题;(2)设学校计划购进甲种篮球m个,则学校计划购进乙种篮球(100−m)个;根据题意列不等式即可得到结论;(3)设购买跳绳a根,毽子b个,根据题意得方程10a+5b=290,求得b=58−2a>0,解不等式即可得到结论..【详解】(1)设甲种篮球每个的售价为元,乙种篮球每个的售价为元.依题意,得解得答:甲种篮球每个的售价为30元,乙种篮球每个的售价为70元.(2)设学校购进甲种篮球个,则购进乙种篮球个.由已知,得.解得.又,∴.设购进甲、乙两种篮球学校花的钱为元,则,∴当时,取最小值,花最少钱为2990元.花最少钱的进货方案为购进甲种篮球90个,乙种篮球10个.(3)设购买跳绳根,毽子个,则,.解得.∵为正整数,∴有28种进货方案.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用不等式的性质解答问题.21、(1);(2)①,②当m=3时,S有最大值,③点P的坐标为(4,6)或(,).【分析】(1)由,则-12a=6,求得a即可;(2)①过点P作x轴的垂线交AB于点D,先求出AB的表达式y=-x+6,设点,则点D(m,-m+6),然后再表示即可;②由在中,<0,故S有最大值;③△PDE为等腰直角三角形,则PE=PD,然后再确定函数的对称轴、E点的横坐标,进一步可得|PE|=2m-4,即求得m即可确定P的坐标.【详解】解:(1)由抛物线的表达式可化为,则-12a=6,解得:a=,故抛物线的表达式为:;(2)①过点P作x轴的垂线交AB于点D,由点A(0,6)、B的坐标可得直线AB的表达式为:y=-x+6,设点,则点D(m,-m+6),∴;②∵,<0∴当m=3时,S有最大值;③∵△PDE为等腰直角三角形,∴PE=PD,∵点,函数的对称轴为:x=2,则点E的横坐标为:4-m,则|PE|=2m-4,即,解得:m=4或-2或或(舍去-2和)当m=4时,=6;当m=时,=.故点P的坐标为(4,6)或(,).【点睛】本题属于二次函数综合应用题,主要考查了一次函数、等腰三角形的性质、图形的面积计算等知识点,掌握并灵活应用所学知识是解答本题的关键.22、(1)①见解析;②见解析;(1)1π.【分析】(1)①利用点平移的坐标规律,分别画出点A、B、C的对应点A1、B1、C1的坐标,然后描点可得△A1B1C1;②利用网格特点和旋转的性质,分别画出点A1、B1、C1的对应点A1、B1、C1即可;(1)根据弧长公式计算.【详解】(1)①如图,△A1B1C1为所作;②如图,△A1B1C1为所作;(1)点C1在旋转过程中所经过的路径长=【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移的性质.23、(1)2;(2)1【分析】(1)将A坐标代入反比例函数解析式中,即可求出a的值;(2)由(1)求出的a值,确定出A坐标,代入直线解析式中求出b的值,令直线解析式中y=0求出x的值,确定出OC的长,△AOC以OC为底,A纵坐标为高,利用三角形面积公式求出即可.【详解】(1)将A(1,a)代入反比例解析式得:;(2)由a=2,得到A(1,2),代入直线解析式得:1+b=2,解得:b=1,即直线解析式为y=x+1,令y=0,解得:x=-1,即C(-1,0),OC=1,则S△AOC=×1×2=1.【点睛】此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形性质,待定系数法确定函数解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论