版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,已知a∥b∥c,直线AC,DF与a、b、c相交,且AB=6,BC=4,DF=8,则DE=(
)A.12 B. C. D.32.图2是图1中长方体的三视图,若用表示面积,则()A. B. C. D.3.某校准备修建一个面积为200平方米的矩形活动场地,它的长比宽多12米,设场地的宽为x米,根据题意可列方程为()A.x(x﹣12)=200 B.2x+2(x﹣12)=200C.x(x+12)=200 D.2x+2(x+12)=2004.的相反数是()A. B. C. D.35.能判断一个平行四边形是矩形的条件是()A.两条对角线互相平分 B.一组邻边相等C.两条对角线互相垂直 D.两条对角线相等6.如图⊙O的半径为5,弦心距,则弦的长是()A.4 B.6 C.8 D.57.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是()A.抛物线开口向下B.抛物线与x轴的交点为(﹣1,0),(3,0)C.当x=1时,y有最大值为0D.抛物线的对称轴是直线x=8.如图,周长为28的菱形中,对角线、交于点,为边中点,的长等于()A.3.5 B.4 C.7 D.149.已知,满足,则的值是().A.16 B. C.8 D.10.已知命题“关于的一元二次方程必有两个实数根”,则能说明该命题是假命题的的一个值可以是()A.1 B.2 C.3 D.411.如图,在平面直角坐标系中,点,y是关于的二次函数,抛物线经过点.抛物线经过点抛物线经过点抛物线经过点则下列判断:①四条抛物线的开口方向均向下;②当时,四条抛物线表达式中的均随的增大而增大;③抛物线的顶点在抛物线顶点的上方;④抛物线与轴交点在点的上方.其中正确的是A.①②④ B.①③④C.①②③ D.②③④12.若数据2,x,4,8的平均数是4,则这组数据的中位数和众数是()A.3和2
B.4和2
C.2和2
D.2和4二、填空题(每题4分,共24分)13.已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点坐标为(m,0).若2<m<5,则a的取值范围是_____.14.如图,直线y=k1x+b与双曲线交于A、B两点,其横坐标分别为1和5,则不等式k1x<+b的解集是▲.15.一个不透明的口袋中装有5个红球和若干个白球,他们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,估计口袋中白球有__________个.16.如图,在中,,若,则__________.17.菱形ABCD的周长为20,且有一个内角为120°,则它的较短的对角线长为______.18.对一批防PM2.5口罩进行抽检,经统计合格口罩的概率是0.9,若这批口罩共有2000只,则其中合格的大约有__只.三、解答题(共78分)19.(8分)如图1,在平面直角坐标系中,已知抛物线与轴交于,两点,与轴交于点.(1)求抛物线的函数表达式;(2)若点P是位于直线BC上方抛物线上的一个动点,求△BPC面积的最大值;(3)若点D是y轴上的一点,且以B,C,D为顶点的三角形与相似,求点D的坐标;(4)若点E为抛物线的顶点,点F(3,a)是该抛物线上的一点,在轴、轴上分别找点M、N,使四边形EFMN的周长最小,求出点M、N的坐标.20.(8分)综合与探究:如图,已知抛物线与x轴相交于A、B两点,与y轴交于点C,连接BC,点P为线段BC上一动点,过点P作BC的垂线交抛物线于点Q,请解答下列问题:(1)求抛物线与x轴的交点A和B的坐标及顶点坐标(2)求线段PQ长度的最大值,并直接写出及此时点P的坐标.21.(8分)如图,是半圆上的三等分点,直径,连接,垂足为交于点,求的度数和涂色部分的面积.22.(10分)已知:如图,,点在射线上.求作:正方形,使线段为正方形的一条边,且点在内部.(请用直尺、圆规作图,不写作法,但要保留作图痕迹)23.(10分)2016年3月,我市某中学举行了“爱我中国•朗诵比赛”活动,根据学生的成绩划分为A、B、C、D四个等级,并绘制了不完整的两种统计图.根据图中提供的信息,回答下列问题:(1)参加朗诵比赛的学生共有人,并把条形统计图补充完整;(2)扇形统计图中,m=,n=;C等级对应扇形有圆心角为度;(3)学校欲从获A等级的学生中随机选取2人,参加市举办的朗诵比赛,请利用列表法或树形图法,求获A等级的小明参加市朗诵比赛的概率.24.(10分)计算:|tan30°-l|+2sin60o-tan45°.25.(12分)(1)某学校“学习落实”数学兴趣小组遇到这样一个题目:如图1,在中,点在线段上,,,,,求的长.经过数学小组成员讨论发现,过点作,交的延长线于点,通过构造就可以解决问题(如图2)请回答:,.(2)请参考以上解决思路,解决问题:如图在四边形中对角线与相交于点,,,,.求的长.26.俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?
参考答案一、选择题(每题4分,共48分)1、C【解析】解:∵a∥b∥c,∴,∵AB=6,BC=4,DF=8,∴,∴DE=.故选C.【点睛】本题考查了平行线分线段成比例定理,熟练掌握定理内容是关键:三条平行线截两条直线,所得的对应线段成比例.2、A【分析】由主视图和左视图的宽为x,结合两者的面积得出俯视图的长和宽,从而得出答案.【详解】∵S主=x1+1x=x(x+1),S左=x1+x=x(x+1),∴俯视图的长为x+1,宽为x+1,则俯视图的面积S俯=(x+1)(x+1)=x1+3x+1.故选A.【点睛】本题考查了由三视图判断几何体,解题的关键是根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高.3、C【解析】解:∵宽为x,长为x+12,∴x(x+12)=1.故选C.4、A【分析】根据相反数的意义求解即可.【详解】的相反数是-,故选:A.【点睛】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.5、D【分析】根据矩形的判定进行分析即可;【详解】选项A中,两条对角线互相平分是平行四边形,故选项A错误;选项B中,一组邻边相等的平行四边形是菱形,故选项B错误;选项C中,两条对角线互相垂直的平行四边形是菱形,故选项C错误;选项D中,两条对角线相等的平行四边形是矩形,故选项D正确;故选D.【点睛】本题主要考查了矩形的判定,掌握矩形的判定是解题的关键.6、C【解析】分析:连接OA,在直角三角形OAC中,OC=3,OA=5,则可求出AC,再根据垂径定理即可求出AB.解:连接OA,如下图所示:∵在直角三角形OAC中,OA=5,弦心距,∴AC=,又∵OC⊥AB,∴AB=2AC=2×4=1.故选A.7、D【解析】A、由a=1>0,可得出抛物线开口向上,A选项错误;B、由抛物线与y轴的交点坐标可得出c值,进而可得出抛物线的解析式,令y=0求出x值,由此可得出抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、由抛物线开口向上,可得出y无最大值,C选项错误;D、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=-,D选项正确.综上即可得出结论.【详解】解:A、∵a=1>0,∴抛物线开口向上,A选项错误;B、∵抛物线y=x1-3x+c与y轴的交点为(0,1),∴c=1,∴抛物线的解析式为y=x1-3x+1.当y=0时,有x1-3x+1=0,解得:x1=1,x1=1,∴抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、∵抛物线开口向上,∴y无最大值,C选项错误;D、∵抛物线的解析式为y=x1-3x+1,∴抛物线的对称轴为直线x=-=-=,D选项正确.故选D.【点睛】本题考查了抛物线与x轴的交点、二次函数的性质、二次函数的最值以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征逐一分析四个选项的正误是解题的关键.8、A【解析】根据菱形的周长求出其边长,再根据菱形的性质得出对角线互相垂直,最后根据直角三角形斜边上的中线等于斜边的一半解答即可.【详解】∵四边形是菱形,周长为28∴AB=7,AC⊥BD∴OH=故选:A【点睛】本题考查的是菱形的性质及直角三角形斜边上的中线等于斜边的一半,熟练掌握菱形的性质是关键.9、A【分析】先把等式左边分组因式分解,化成非负数之和等于0形式,求出x,y即可.【详解】由得所以=0,=0所以x=-2,y=-4所以=(-4)-2=16故选:A【点睛】考核知识点:因式分解运用.灵活拆项因式分解是关键.10、A【分析】根据判别式的意义,当m=1时,△<0,从而可判断原命题为是假命题.【详解】,解:△=n2-4,当n=1时,△<0,方程没有实数根,当n=2时,△=0,方程有两个相等的实数根,当n=3时,△>0,方程有两个不相等的实数根,当n=4时,△>0,方程有两个不相等的实数根,故选:A【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.11、A【分析】根据BC的对称轴是直线x=1.5,的对称轴是直线x=1,画大致示意图,即可进行判定.【详解】解:①由可知,四条抛物线的开口方向均向下,故①正确;②和的对称轴是直线x=1.5,和的对称轴是直线x=1,开口方向均向下,所以当时,四条抛物线表达式中的均随的增大而增大,故②正确;③和的对称轴都是直线x=1.5,D关于直线x=1.5的对称点为(-1,-2),而A点坐标为(-2,-2),可以判断比更陡,所以抛物线的顶点在抛物线顶点的下方,故③错误;④的对称轴是直线x=1,C关于直线x=1的对称点为(-1,3),可以判断出抛物线与轴交点在点的上方,故④正确.故选:A.【点睛】本题考查了二次函数的图象和性质,根据对称点找到对称轴是解题的关键,充分运用数形结合的思想能使解题更加简便.如果逐个计算出解析式,工作量显然更大.12、A【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数;据此先求得x的值,再将数据按从小到大排列,将中间的两个数求平均值即可得到中位数,众数是出现次数最多的数.【详解】这组数的平均数为=4,解得:x=2;所以这组数据是:2,2,4,8;中位数是(2+4)÷2=3,2在这组数据中出现2次,4出现一次,8出现一次,所以众数是2;故选:A.【点睛】本题考查平均数和中位数和众数的概念.二、填空题(每题4分,共24分)13、<a或﹣5<a<﹣1.【分析】首先可由二次函数的表达式求得二次函数图象与x轴的交点坐标,可知交点坐标是由a表示的,再根据题中给出的交点横坐标的取值范围可以求出a的取值范围.【详解】解:∵y=ax1+(a1﹣1)x﹣a=(ax﹣1)(x+a),∴当y=0时,x=﹣a或x=,∴抛物线与x轴的交点为(﹣a,0),(,0),由题意函数与x轴的一个交点坐标为(m,0)且1<m<5,∴当a>0时,1<<5,即<a;当a<0时,1<﹣a<5,即﹣5<a<﹣1;故答案为<a或﹣5<a<﹣1.【点睛】本题综合考查二次函数图象与与x轴的交点坐标以及一元一次不等式的解法,熟练掌握二次函数图象与坐标轴交点坐标的求法以及一元一次不等式的解法是解题关键.14、-2<x<-1或x>1.【解析】不等式的图象解法,平移的性质,反比例函数与一次函数的交点问题,对称的性质.不等式k1x<+b的解集即k1x-b<的解集,根据不等式与直线和双曲线解析式的关系,可以理解为直线y=k1x-b在双曲线下方的自变量x的取值范围即可.而直线y=k1x-b的图象可以由y=k1x+b向下平移2b个单位得到,如图所示.根据函数图象的对称性可得:直线y=k1x-b和y=k1x+b与双曲线的交点坐标关于原点对称.由关于原点对称的坐标点性质,直线y=k1x-b图象与双曲线图象交点A′、B′的横坐标为A、B两点横坐标的相反数,即为-1,-2.∴由图知,当-2<x<-1或x>1时,直线y=k1x-b图象在双曲线图象下方.∴不等式k1x<+b的解集是-2<x<-1或x>1.15、15【分析】由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.【详解】解:设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴,解得x=15,检验:x=15是原方程的根,∴白球的个数为15个,故答案为:15.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出和分式方程的解法解题关键.16、6【分析】先根据平行四边形的性质证得△BEG∽△FAG,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得,根据相似三角形的性质可求得,进而可得答案.【详解】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴△BEG∽△FAG,∵,∴,∴,∵,∴,,∴.故答案为:6.【点睛】本题考查了平行四边形的性质、相似三角形的判定和性质以及三角形的面积等知识,属于常考题型,熟练掌握平行四边形的性质和相似三角形的判定与性质是解答的关键.17、1【分析】根据菱形的性质可得菱形的边长为1,然后根据内角度数进而求出较短对角线的长.【详解】如图所示:菱形ABCD的周长为20,AB=20÷4=1,又,四边形ABCD是菱形,,AB=AD,是等边三角形,BD=AB=1.故答案为1.【点睛】本题主要考查菱形的性质及等边三角形,关键是熟练掌握菱形的性质.18、1.【分析】用这批口罩的只数×合格口罩的概率,列式计算即可得到合格的只数.【详解】2000×0.9=2000×0.9=1(只).故答案为:1.【点睛】本题主要考查了用样本估计总体,生产中遇到的估算产量问题,通常采用样本估计总体的方法.三、解答题(共78分)19、(1);(2)△BPC面积的最大值为;(3)D的坐标为(0,1)或(0,);(4)M(,0),N(0,)【分析】(1)抛物线的表达式为:y=a(x+1)(x-5)=a(x2-4x-5),即-5a=5,解得:a=-1,即可求解;(2)利用S△BPC=×PH×OB=(-x2+4x+5+x-5)=(x-)2+,即可求解;(3)B、C、D为顶点的三角形与△ABC相似有两种情况,分别求解即可;(4)作点E关于y轴的对称点E′(-2,9),作点F(2,9)关于x轴的对称点F′(3,-8),连接E′、F′分别交x、y轴于点M、N,此时,四边形EFMN的周长最小,即可求解.【详解】解:(1)把,分别代入得:∴∴抛物线的表达式为:.(2)如图,过点P作PH⊥OB交BC于点H令x=0,得y=5∴C(0,5),而B(5,0)∴设直线BC的表达式为:∴∴∴设,则∴∴∴∴△BPC面积的最大值为.(3)如图,∵C(0,5),B(5,0)∴OC=OB,∴∠OBC=∠OCB=45°∴AB=6,BC=要使△BCD与△ABC相似则有或①当时∴则∴D(0,)②当时,CD=AB=6,∴D(0,1)即:D的坐标为(0,1)或(0,)(4)∵∵E为抛物线的顶点,∴E(2,9)如图,作点E关于y轴的对称点E'(﹣2,9),∵F(3,a)在抛物线上,∴F(3,8),∴作点F关于x轴的对称点F'(3,8),则直线E'F'与x轴、y轴的交点即为点M、N设直线E'F'的解析式为:则∴∴直线E'F'的解析式为:∴,0),N(0,).【点睛】本题为二次函数综合运用题,涉及到一次函数、对称点性质等知识点,其中(4),利用对称点性质求解是此类题目的一般解法,需要掌握.20、(1)点A的坐标为(-2,0),点B的坐标为(1,0),顶点坐标为(1,).(2)PQ的最大值=,此时,点P的坐标为(1,3)【分析】(1)令y=0可求得x的值,可知点A、点B的坐标,运用配方法可求抛物线的顶点坐标;(2)先求出直线BC的表达式,再设点Q的坐标为(m,)则点E的坐标为(m,-m+1),得QE=-(-m+1)=,求出QE的最大值即可解决问题.【详解】(1)把y=0代入中得:解得:x1=-2,x2=1∴点A的坐标为(-2,0),点B的坐标为(1,0).∵∴抛物线W的顶点坐标为(1,).(2)过点Q作QF⊥x轴,垂足为F,交线段BC于点E.当x=0时,代入得:y=1,∴点C的坐标为(0,1),∵点B的坐标为(1,0).∴OC=OB=1,∴∠OBC=15°.设QC的表达式为y=kx+b,把C(0,1),B(1,0)代入解析式得,,解得,,∴直线BC的表达式为y=-x+1.∵QF⊥x轴,PQ⊥BC,∴∠PQE=15°.在Rt△PQE中,∠PQE=∠PEQ=15°,∴当QE最大时,PQ的长也最大.设点Q的坐标为(m,)则点E的坐标为(m,-m+1).∴QE=-(-m+1)=.∵a=-<0,∴QE有最大值为:当m=2时,QE最大值为2.∴PQ的最大值=QE·.此时,点P的坐标为(1,3)【点睛】本题考查了待定系数法求函数的解析式以及二次函数的性质,正确表示出QE的长度是关键.21、,.【分析】连接OD,OC,根据已知条件得到∠AOD=∠DOC=∠COB=60°,根据圆周角定理得到∠CAB=30°,于是得到∠AFE=60°;再推出△AOD是等边三角形,OA=2,得到DE=,根据扇形和三角形的面积公式即可得到涂色部分的面积.【详解】连接,是半圆上的三等分点,则,,∵,∴,;,∴是等边三角形,,所以.【点睛】本题考查了扇形的面积,等边三角形的判定和性质,正确的作出辅助线是解题的关键.22、见详解【分析】根据正方形的判定定理,利用尺规先作出FD⊥BC,再作∠ABC的平分线交DF于点F,作∠BDF的平分线交AB于点E,进而即可作出正方形.【详解】如图所示:∴正方形就是所求图形.【点睛】本题主要考查正方形的判定定理和尺规作图,掌握尺规作角平分线和垂线,是解题的关键.23、(1)40,补图见解析;(2)10,40,144;(3)【解析】试题分析:(1)根据D等级的有12人,占总数的30%,即可求得总人数,利用总人数减去其它等级的人数求得B等级的人数,从而作出直方图;(2)根据百分比的定义求得m、n的值,利用360°乘以C等级所占的百分比即可求得对应的圆心角;(3)利用列举法即可求解.试题解析:(1)参加演讲比赛的学生共有:12÷30%=40(人),则B等级的人数是:40-4-16-12=8(人).(2)A所占的比例是:×100%=10%,C所占的百分比:×100%=40%.C等级对应扇形的圆心角是:360×40%=144°;(3)设A等级的小明用a表示,其他的几个学生用b、c、d表示.共有12种情况,其中小明参加的情况有6种,则P(小明参加比赛)=.考点:1.条形统计图;2.扇形统计图;3.列表法与树状图法.24、【分析】将特殊角的三角函数值代入求解即可.【详解】原式=|-1|+2×-1=1-+-1=.【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.25、(1),;(2)【分析】(1)
根据平行线的性质可得出∠ADB=∠OAC=75°,结合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性质可求出OD的值,进而可得出AD的值,由三角形内角和定理可得出∠ABD=75°=∠
ADB,由等角对等边可得出;
(2)
过
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工程事故分析与处理(含答案)
- 安全教育主题班会教案15篇
- MSP430中文数据手册
- 2023-2024学年全国小学四年级上英语人教版期中考试试卷(含答案解析)
- 个人借款给公司合同协议书2024年
- 个人经济适用住房买卖合同2024年
- 2024年与农户签订的土地承包合同
- 2024年呼和浩特客运资格证考试都考什么
- 2024年教职员工聘用合同书样本
- 2024年木材采购合同范本
- 艺术美学讲义大纲
- 幼儿园一日生活的组织与实施
- 化工企业冬季五防
- 水利大坝工程混凝土施工常见的质量问题
- 超声诊断学腹膜后教学课件
- 浙教版九年级上册科学化学计算题型分析
- 国家开放大学《西方行政学说》章节测试参考答案
- 辽宁省葫芦岛市药品零售药店企业药房名单目录
- 整本书阅读《乡土中国》导读课件-统编版高中语文必修上册
- 小学生量感培养的调查问卷(教师)
- 【高中美术课件】礼仪与教化
评论
0/150
提交评论