版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.若点、、都在反比例函数的图象上,并且,则下列各式中正确的是()A. B. C. D.2.关于反比例函数,下列说法不正确的是()A.函数图象分别位于第一、第三象限B.当x>0时,y随x的增大而减小C.若点A(x1,y1),B(x2,y2)都在函数图象上,且x1<x2,则y1>y2D.函数图象经过点(1,2)3.下列图案中既是中心对称图形,又是轴对称图形的是()A. B. C. D.4.如图,直线y=x+2与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣,0) B.(﹣,0) C.(﹣,0) D.(﹣,0)5.如图,已知ΔABC~ΔADB,点D是AC的中点,AC=4,则AB的长为()A.2 B.4 C.22 D.6.如图是用围棋棋子在6×6的正方形网格中摆出的图案,棋子的位置用有序数对表示,如A点为(5,1),若再摆一黑一白两枚棋子,使这9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是()A.黑(1,5),白(5,5) B.黑(3,2),白(3,3)C.黑(3,3),白(3,1) D.黑(3,1),白(3,3)7.如图,在平面直角坐标系内,正方形OABC的顶点A,B在第一象限内,且点A,B在反比例函数y=(k≠0)的图象上,点C在第四象限内.其中,点A的纵坐标为2,则k的值为()A.2﹣2 B.2﹣2 C.4﹣4 D.4﹣48.方程的根是()A.-1 B.0 C.-1和2 D.1和29.把分式中的、都扩大倍,则分式的值()A.扩大倍 B.扩大倍 C.不变 D.缩小倍10.已知二次函数的图象经过点,当自变量的值为时,函数的值为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图示,在中,,,,点在内部,且,连接,则的最小值等于______.12.已知,相似比为,且的面积为,则的面积为__________.13.如图,正方形网格中,5个阴影小正方形是一个正方体表面展开图的一部分.现从其余空白小正方形中任取一个涂上阴影,则图中六个阴影小正方形能构成这个正方体的表面展开图的概率是______
.14.若,则代数式的值为________________.15.如图,已知射线,点从B点出发,以每秒1个单位长度沿射线向右运动;同时射线绕点顺时针旋转一周,当射线停止运动时,点随之停止运动.以为圆心,1个单位长度为半径画圆,若运动两秒后,射线与恰好有且只有一个公共点,则射线旋转的速度为每秒______度.16.将抛物线先向右平移1个单位长度,再向上平移2个单位长度,得到的抛物线的解析式是______.17.已知一次函数的图象与反比例函数的图象相交,其中有一个交点的横坐标是,则的值为_____.18.代数式a2+a+3的值为7,则代数式2a2+2a-3的值为________.三、解答题(共66分)19.(10分)某商品的进价为每件10元,现在的售价为每件15元,每周可卖出100件,市场调查反映:如果每件的售价每涨1元(售价每件不能高于20元),那么每周少卖10件.设每件涨价元(为非负整数),每周的销量为件.(1)求与的函数关系式及自变量的取值范围;(2)如果经营该商品每周的利润是560元,求每件商品的售价是多少元?20.(6分)我市某旅行社为吸引我市市民组团去长白山风景区旅游,推出了如下的收费标准:如果人数不超过25人,人均旅游费用为800元;如果人数超过25人,每增加1人,人均旅游费用降低20元,但人均旅游费用不得低于650元,某单位组织员工去长白山风景区旅游,共支付给旅行社旅游费用21000元,请问该单位这次共有多少员工去长白山风景区旅游?21.(6分)化简:22.(8分)如图,在平面直角坐标系xOy中,抛物线()与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a的值;(3)设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.23.(8分)如图,已知抛物线(a≠0)经过A(﹣1,0)、B(3,0)、C(0,﹣3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P的坐标;(3)点M也是直线l上的动点,且△MAC为等腰三角形,请直接写出所有符合条件的点M的坐标.24.(8分)如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.25.(10分)如图,抛物线与x轴相交于A,B两点,与y轴相交于点C.点D是直线AC上方抛物线上一点,过点D作y轴的平行线,与直线AC相交于点E.(1)求直线AC的解析式;(2)当线段DE的长度最大时,求点D的坐标.26.(10分)已知抛物线(是常数)经过点.(1)求该抛物线的解析式和顶点坐标.(2)若点在抛物线上,且点关于原点的对称点为.①当点落在该抛物线上时,求的值;②当点落在第二象限内,取得最小值时,求的值.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据反比例函数的图象特征即可得.【详解】反比例函数的图象特征:(1)当时,y的取值为正值;当时,y的取值为负值;(2)在每个象限内,y随x的增大而增大由特征(1)得:,则最大由特征(2)得:综上,故选:B.【点睛】本题考查了反比例函数的图象特征,掌握理解反比例函数的图象特征是解题关键.2、C【分析】根据反比例函数图象上点的坐标特征对D进行判断;根据反比例函数的性质对A、B、C进行判断.【详解】A.k=2>0,则双曲线的两支分别位于第一、第三象限,所以A选项的说法正确;B.当x>0时,y随着x的增大而减小,所以B选项的说法正确;C.若x1<0,x2>0,则y2>y1,所以C选项的说法错误;D.把x=1代入得y=2,则点(1,2)在的图象上,所以D选项的说法正确.故选C.【点睛】本题考查了反比例函数的性质:反比例函数(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.3、D【分析】根据中心对称图形以及轴对称图形的定义逐项判断即可.在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.【详解】解:A.不是中心对称图形,是轴对称图形,此选项错误;B.是中心对称图形,不是轴对称图形,此选项错误;C.不是中心对称图形,是轴对称图形,此选项错误;D.既是中心对称图形,又是轴对称图形,此选项正确;故选:D.【点睛】本题考查的知识点是识别中心对称图形以及轴对称图形,掌握中心对称图形以及轴对称图形的特征是解此题的关键.4、A【分析】根据一次函数解析式可以求得,,根据平面直角坐标系里线段中点坐标公式可得,,根据轴对称的性质和两点之间线段最短的公理求出点关于轴的对称点,连接,线段的长度即是的最小值,此时求出解析式,再解其与轴的交点即可.【详解】解:,,,,同理可得点关于轴的对称点;连接,设其解析式为,代入与可得:,令,解得..【点睛】本题是结合了一次函数的动点最值问题,熟练掌握一次函数的图象与性质,把点的坐标与线段长度灵活转化为两点间的问题是解答关键.5、C【分析】根据相似三角形的性质列出比例式求解即可.【详解】解:∵点D是AC的中点,AC=4,,
∴AD=2,
∵ΔABC~ΔADB,
∴AD∴2∴AB=22,
故选C【点睛】本题考查了相似三角形的性质,能够根据相似三角形列出比例式是解答本题的关键,难度不大.6、D【分析】利用轴对称图形以及中心对称图形的性质即可解答.【详解】如图所示:黑(3,1),白(3,3).故选D.【点睛】此题主要考查了旋转变换以及轴对称变换,正确把握图形的性质是解题关键.7、B【分析】作AE⊥x轴于E,BF∥x轴,交AE于F,根据图象上点的坐标特征得出A(,2),证得△AOE≌△BAF(AAS),得出OE=AF,AE=BF,即可得到B(+2,2-),根据系数k的几何意义得到k=(+2)(2-),解得即可.【详解】解:作AE⊥x轴于E,BF//x轴,交AE于F,∵∠OAE+∠BAF=90°=∠OAE+∠AOE,∴∠BAF=∠AOE,在△AOE和△BAF中∴△AOE≌△BAF(AAS),∴OE=AF,AE=BF,∵点A,B在反比例函数y=(k≠0)的图象上,点A的纵坐标为2,∴A(,2),∴B(+2,2﹣),∴k=(+2)(2﹣),解得k=﹣2±2(负数舍去),∴k=2﹣2,故选:B.【点睛】本题考查了正方形的性质,全等三角形的性质与判定,反比例函数的图象与性质,关键是构造全等三角形.8、C【分析】用因式分解法课求得【详解】解:,,解得故选C【点睛】本题考查了用因式分解求一元二次方程.9、C【分析】依据分式的基本性质进行计算即可.【详解】解:∵a、b都扩大3倍,∴∴分式的值不变.故选:C.【点睛】本题主要考查的是分式的基本性质,熟练掌握分式的基本性质是解题的关键.10、B【分析】把点代入,解得的值,得出函数解析式,再把=3即可得到的值.【详解】把代入,得,解得=把=3,代入==-4故选B.【点睛】本题考查了二次函数的解析式,直接将坐标代入法是解题的关键.二、填空题(每小题3分,共24分)11、【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,,然后根据,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P的轨迹是以AB为弦,圆周角为120°的圆弧上,如图所示,当点C、O、P在同一直线上时,CP最小,构建圆,利用勾股定理,即可得解.【详解】∵,,,∴∴∠CAB=30°,∠ABC=60°∵,∠PAB+∠PAC=30°∴∠ACB+∠PAC+∠PBC=∠APB=120°∴定角定弦,点P的轨迹是以AB为弦,圆周角为120°的圆弧上,如图所示,当点C、O、P在同一直线上时,CP最小∴CO⊥AB,∠COB=60°,∠ABO=30°∴OB=2,∠OBC=90°∴∴故答案为.【点睛】此题主要考查直角三角形中的动点综合问题,解题关键是找到点P的位置.12、【分析】根据相似三角形的性质,即可求解.【详解】∵,相似比为,∴与,的面积比等于4:1,∵的面积为,∴的面积为1.故答案是:1.【点睛】本题主要考查相似三角形的性质定理,掌握相似三角形的面积比等于相似比的平方,是解题的关键.13、【分析】首先确定所求的阴影小正方形可能的位置总数目,除以剩余空白部分的正方形的面积个数即为所求的概率.【详解】解:从阴影下边的四个小正方形中任选一个,就可以构成正方体的表面展开图,∴能构成这个正方体的表面展开图的概率是.故答案为:.【点睛】本题将概率的求解设置于正方体的表面展开图中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比;“一,四,一”组合类型的6个正方形能组成正方体.14、2019【分析】所求的式子前三项分解因式,再把已知的式子整体代入计算即可.【详解】解:∵,∴.故答案为:2019.【点睛】本题考查了代数式求值、分解因式和整体的数学思想,属于常见题型,灵活应用整体的思想是解题关键.15、30或60【分析】射线与恰好有且只有一个公共点就是射线与相切,分两种情况画出图形,利用圆的切线的性质和30°角的直角三角形的性质求出旋转角,然后根据旋转速度=旋转的度数÷时间即得答案.【详解】解:如图1,当射线与在射线BA上方相切时,符合题意,设切点为C,连接OC,则OC⊥BP,于是,在直角△BOC中,∵BO=2,OC=1,∴∠OBC=30°,∴∠1=60°,此时射线旋转的速度为每秒60°÷2=30°;如图2,当射线与在射线BA下方相切时,也符合题意,设切点为D,连接OD,则OD⊥BP,于是,在直角△BOD中,∵BO=2,OD=1,∴∠OBD=30°,∴∠MBP=120°,此时射线旋转的速度为每秒120°÷2=60°;故答案为:30或60.【点睛】本题考查了圆的切线的性质、30°角的直角三角形的性质和旋转的有关概念,正确理解题意、熟练掌握基本知识是解题的关键.16、【分析】先确定抛物线y=x1的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移所得对应点的坐标为(1,1),然后根据顶点式写出新抛物线解析式.【详解】解:抛物线y=x1的顶点坐标为(0,0),点(0,0)先向右平移1个单位长度,再向上平移1个单位长度所得对应点的坐标为(1,1),所以新抛物线的解析式为y=(x-1)1+1故答案为y=(x-1)1+1.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.17、1.【解析】把x=2代入一次函数的解析式,即可求得交点坐标,然后利用待定系数法即可求得k的值.【详解】在y=x+1中,令x=2,
解得y=3,
则交点坐标是:(2,3),
代入y=
得:k=1.
故答案是:1.【点睛】本题考查了用待定系数法确定函数的解析式,是常用的一种解题方法.同学们要熟练掌握这种方法.18、3【分析】先求得a2+a=1,然后依据等式的性质求得2a3+2a=2,然后再整体代入即可.【详解】∵代数式a2+a+3的值为7,∴a2+a=1.∴2a3+2a=2.∴2a3+2a-3=2-3=3.故答案为3.【点睛】本题主要考查的是求代数式的值,整体代入是解题的关键.三、解答题(共66分)19、(1),;(2)每件的售价是17元或者18元.【分析】(1)根据“每件的售价每涨1元,那么每周少卖10件”,即可求出y与x的函数关系式,然后根据x的实际意义和售价每件不能高于20元即可求出x的取值范围;(2)根据总利润=单件利润×件数,列方程,并解方程即可.【详解】(1)解:与的函数关系式为∵售价每件不能高于20元∴∴自变量的取值范围是;(2)解:设每件涨价元(为非负整数),则每周的销量为件,根据题意列方程,解得:,所以,每件的售价是17元或者18元.答:如果经营该商品每周的利润是560元,求每件商品的售价是17元或者18元.【点睛】此题考查的是一次函数的应用和一元二次方程的应用,掌握实际问题中的等量关系是解决此题的关键.20、共有30名员工去旅游.【分析】利用总价=单价×数量求出人数时25时的总费用,由该费用小于21000可得出去旅游的人数多于25人,设该单位去旅游人数为x人,则人均费用为800﹣20(x﹣25)元,根据总价=单价×数量,即可得出关于x的一元二次方程,解之即可得出x的值,再代入人均费用中去验证,取使人均费用大于650的值即可得出结论.【详解】解:∵800×25=20000<21000,∴人数超过25人.设共有x名员工去旅游,则人均费用为800﹣20(x﹣25)元,依题意,得:x[800﹣20(x﹣25)]=21000,解得:x1=35,x2=30,∵当x=30时,800﹣20×(30﹣25)=700>650,当x=35时,800﹣20×(35﹣25)=600<650,∴x=35不符合题意,舍去.答:共有30名员工去旅游.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21、【分析】根据特殊角的三角函数值与二次根式的运算法则即可求解.【详解】解:原式====.【点睛】此题主要考查实数的运算,解题的关键是熟知特殊角的三角函数值.22、(1)A(-1,0),;(2);(3)P的坐标为(1,)或(1,-4).【分析】(1)在中,令y=0,得到,,得到A(-1,0),B(3,0),由直线l经过点A,得到,故,令,即,由于CD=4AC,故点D的横坐标为4,即有,得到,从而得出直线l的函数表达式;(2)过点E作EF∥y轴,交直线l于点F,设E(,),则F(,),EF==,S△ACE=S△AFE-S△CFE==,故△ACE的面积的最大值为,而△ACE的面积的最大值为,所以,解得;(3)令,即,解得,,得到D(4,5a),因为抛物线的对称轴为,设P(1,m),然后分两种情况讨论:①若AD是矩形的一条边,②若AD是矩形的一条对角线.【详解】解:(1)∵=,令y=0,得到,,∴A(-1,0),B(3,0),∵直线l经过点A,∴,,∴,令,即,∵CD=4AC,∴点D的横坐标为4,∴,∴,∴直线l的函数表达式为;(2)过点E作EF∥y轴,交直线l于点F,设E(,),则F(,),EF==,S△ACE=S△AFE-S△CFE===,∴△ACE的面积的最大值为,∵△ACE的面积的最大值为,∴,解得;(3)令,即,解得,,∴D(4,5a),∵,∴抛物线的对称轴为,设P(1,m),①若AD是矩形的一条边,则Q(-4,21a),m=21a+5a=26a,则P(1,26a),∵四边形ADPQ为矩形,∴∠ADP=90°,∴,∴,即,∵,∴,∴P1(1,);②若AD是矩形的一条对角线,则线段AD的中点坐标为(,),Q(2,),m=,则P(1,8a),∵四边形APDQ为矩形,∴∠APD=90°,∴,∴,即,∵,∴,∴P2(1,-4).综上所述,以点A、D、P、Q为顶点的四边形能成为矩形,点P的坐标为(1,)或(1,-4).考点:二次函数综合题.23、(1);(2)P(1,0);(3)M(1,)(1,)(1,﹣1)(1,0).【分析】(1)直接将A、B、C三点坐标代入抛物线的解析式中求出待定系数即可;(2)由图知:A.B点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知,直线l与x轴的交点,即为符合条件的P点;(3)由于△MAC的腰和底没有明确,因此要分三种情况来讨论:①MA=AC、②MA=MC、③AC=MC;可先设出M点的坐标,然后用M点纵坐标表示△MAC的三边长,再按上面的三种情况列式求解.【详解】解:(1)将A(﹣1,0)、B(3,0)、C(0,﹣3)代入抛物线中,得:,解得:,故抛物线的解析式:.(2)当P点在x轴上,P,A,B三点在一条直线上时,点P到点A、点B的距离之和最短,此时x==1,故P(1,0);(3)如图所示:抛物线的对称轴为:x==1,设M(1,m),已知A(﹣1,0)、C(0,﹣3),则:=,==,=10;①若MA=MC,则,得:=,解得:m=﹣1;②若MA=AC,则,得:=10,得:m=;③若MC=AC,则,得:=10,得:,;当m=﹣6时,M、A、C三点共线,构不成三角形,不合题意,故舍去;综上可知,符合条件的M点,且坐标为M(1,)(1,)(1,﹣1)(1,0).考点:二次函数综合题;分类讨论;综合题;动点型.24、(1)反比例函数表达式为,正比例函数表达式为;(2),.【解析】试题分析:(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 道路养护工程承包合同三篇
- 智能家居工程师的设计理念与技术要求
- 初三班主任期中工作总结耐心教导成功引领
- 垃圾处理站保安工作总结
- 汽车行业的美工工作总结
- 《汽车及配件营销》课件
- 《美容新术课件》课件
- 2023年四川省阿坝自治州公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 2023年广东省湛江市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2021年贵州省黔东南自治州公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2024年建筑工程行业的未来发展
- 幼儿园幼儿食品安全培训
- 中建八局一公司新员工手册
- 食品科学与工程生涯发展展示
- WB原理流程课件
- 设备管理的设备绩效绩效指标和评价体系
- 智能安防智慧监控智慧管理
- 中心学校2023-2024学年度六年级英语质量分析
- 2024年甘肃兰州生物制品研究所有限责任公司招聘笔试参考题库附带答案详解
- spa浴按摩是怎么样的
- 保单检视报告活动策划
评论
0/150
提交评论