版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,点A、B、C在⊙O上,则下列结论正确的是()A.∠AOB=∠ACBB.∠AOB=2∠ACBC.∠ACB的度数等于的度数D.∠AOB的度数等于的度数2.一元二次方程的根为()A. B. C. D.3.下列事件是随机事件的是()A.画一个三角形,其内角和是 B.射击运动员射击一次,命中靶心C.投掷一枚正六面体骰子,朝上一面的点数小于 D.在只装了红球的不透明袋子里,摸出黑球4.如图,在中,,,,则A. B. C. D.5.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为6,∠ADC=60°,则劣弧AC的长为()A.2π B.4π C.5π D.6π6.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且-2≤x≤1时,y的最大值为9,则a的值为A.1或 B.-或 C. D.17.如图,P、Q是⊙O的直径AB上的两点,P在OA上,Q在OB上,PC⊥AB交⊙O于C,QD⊥AB交⊙O于D,弦CD交AB于点E,若AB=20,PC=OQ=6,则OE的长为()A.1 B.1.5 C.2 D.2.58.如图,中,,在同一平面内,将绕点旋转到的位置,使得,则的度数为()A. B. C. D.9.已知m是方程的一个根,则代数式的值等于()A.2005 B.2006 C.2007 D.200810.如图,两个反比例函数和在第一象限内的图象依次是C1和C2,设点P在C1上,轴于点C,交C2于点A,轴于点D,交C2于点B,则四边形PAOB的面积为()A.2 B.3 C.4 D.511.将两个圆形纸片(半径都为1)如图重叠水平放置,向该区域随机投掷骰子,则骰子落在重叠区域(阴影部分)的概率大约为()A. B. C. D.12.已知关于x的一元二次方程有两个不相等的实数根,则k的取值范围是()A.k>-3 B.k≥-3 C.k≥0 D.k≥1二、填空题(每题4分,共24分)13.如图,已知射线,点从B点出发,以每秒1个单位长度沿射线向右运动;同时射线绕点顺时针旋转一周,当射线停止运动时,点随之停止运动.以为圆心,1个单位长度为半径画圆,若运动两秒后,射线与恰好有且只有一个公共点,则射线旋转的速度为每秒______度.14.在一个不透明的布袋中装有4个白球和n个黄球,它们除了颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n=__.15.请写出一个开口向上,并且与y轴交于点(0,-1)的抛物线的表达式:______16.已知等腰,,BH为腰AC上的高,,,则CH的长为______.17.一棵参天大树,树干周长为3米,地上有一根常春藤恰好绕了它5圈,藤尖离地面20米高,那么这根常春藤至少有____米.18.如图,已知反比例函数y=与一次函数y=x+1的图象交于点A(a,﹣1)、B(1,b),则不等式≥x+1的解集为________.三、解答题(共78分)19.(8分)有一个可以自由旋转的圆盘,被分成面积相等的3个扇形区,分别标有数字1,2,3,另有一个不透明的口袋中装有4个完全相同的小球,分别标有数字1,2,3,4(如图所示),小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一个人转动圆盘,另一人从口袋中摸出一个小球,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;否则小亮去.(1)用画树状图或列表的方法求出小颖参加比赛的概率;(2)你认为该游戏公平吗?请说明理由.20.(8分)用适当的方法解下列一元二次方程.(1);(2).21.(8分)如图,斜坡AF的坡度为5:12,斜坡AF上一棵与水平面垂直的大树BD在阳光照射下,在斜坡上的影长BC=6.5米,此时光线与水平线恰好成30°角,求大树BD的高.(结果精确的0.1米,参考数据≈1.414,≈1.732)22.(10分)已知:如图,∠ABC,射线BC上一点D,求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.(不写作法,保留作图痕迹)23.(10分)如图所示,直线y=x+2与双曲线y=相交于点A(2,n),与x轴交于点C.(1)求双曲线解析式;(2)点P在x轴上,如果△ACP的面积为5,求点P的坐标.24.(10分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,抛物线的对称轴x=1,与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的解析式及A、B点的坐标.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形;若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大;求出此时P点的坐标和四边形ABPC的最大面积.25.(12分)某商场销售一种商品的进价为每件30元,销售过程中发现月销售量y(件)与销售单价x(元)之间的关系如图所示.(1)根据图象直接写出y与x之间的函数关系式.(2)设这种商品月利润为W(元),求W与x之间的函数关系式.(3)这种商品的销售单价定为多少元时,月利润最大?最大月利润是多少?26.某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据圆周角定理和圆心角、弧、弦的关系逐个判断即可.【详解】A.根据圆周角定理得:∠AOB=2∠ACB,故本选项不符合题意;B.根据圆周角定理得:∠AOB=2∠ACB,故本选项符合题意;C.∠ACB的度数等于的度数的一半,故本选项不符合题意;D.∠AOB的度数等于的度数,故本选项不符合题意.故选:B.【点睛】本题考查了圆周角定理和圆心角、弧、弦的关系,能熟记知识点的内容是解答本题的关键.2、A【解析】提公因式,用因式分解法解方程即可.【详解】一元二次方程,提公因式得:,∴或,解得:.故选:A.【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解法是解题的关键.3、B【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A、画一个三角形,其内角和是360°是不可能事件,故本选项错误;
B、射击运动员射击一次,命中靶心是随机事件,故本选项正确;
C、投掷一枚正六面体骰子,朝上一面的点数小于7是必然事件,故本选项错误;
D、在只装了红球的不透明袋子里,摸出黑球是不可能事件,故本选项错误.
故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4、A【解析】先利用勾股定理求出斜边AB,再求出sinB即可.【详解】∵在中,,,,∴,∴.故答案为A.【点睛】本题考查的知识点是锐角三角函数的定义,解题关键是熟记三角函数的定义.5、B【分析】连接OA、OC,然后根据圆周角定理求得∠AOC的度数,最后根据弧长公式求解.【详解】连接OA、OC,∵∠ADC=60°,∴∠AOC=2∠ADC=120°,则劣弧AC的长为:=4π.故选B.【点睛】本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式.6、D【解析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由-2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.【详解】∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),∴对称轴是直线x=-=-1,∵当x≥2时,y随x的增大而增大,∴a>0,∵-2≤x≤1时,y的最大值为9,∴x=1时,y=a+2a+3a2+3=9,∴3a2+3a-6=0,∴a=1,或a=-2(不合题意舍去).故选D.【点睛】本题考查了二次函数的性质,二次函数y=ax2+bx+c(a≠0)的顶点坐标是(-,),对称轴直线x=-,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<-时,y随x的增大而减小;x>-时,y随x的增大而增大;x=-时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<-时,y随x的增大而增大;x>-时,y随x的增大而减小;x=-时,y取得最大值,即顶点是抛物线的最高点.7、C【分析】因为OCP和ODQ为直角三角形,根据勾股定理可得OP、DQ、PQ的长度,又因为CPDQ,两直线平行内错角相等,∠PCE=∠EDQ,且∠CPE=∠DQE=90°,可证CPE∽DQE,可得,设PE=x,则EQ=14-x,解得x的取值,OE=OP-PE,则OE的长度可得.【详解】解:∵在⊙O中,直径AB=20,即半径OC=OD=10,其中CPAB,QDAB,∴OCP和ODQ为直角三角形,根据勾股定理:,,且OQ=6,∴PQ=OP+OQ=14,又∵CPAB,QDAB,垂直于用一直线的两直线相互平行,∴CPDQ,且C、D连线交AB于点E,∴∠PCE=∠EDQ,(两直线平行,内错角相等)且∠CPE=∠DQE=90°,∴CPE∽DQE,故,设PE=x,则EQ=14-x,∴,解得x=6,∴OE=OP-PE=8-6=2,故选:C.【点睛】本题考察了勾股定理、相似三角形的应用、两直线平行的性质、圆的半径,解题的关键在于证明CPE与DQE相似,并得出线段的比例关系.8、B【分析】根据,得出∠BAC=∠C′CA,利用旋转前后的图形是全等,所以△ACC′是等腰三角形即可求出∠CC′A,∠CC′A+∠C′AB=180°即可得出旋转角度,最后得出结果.【详解】解:∵∴∠BAC=∠C′CA,∠CC′A+∠C′AB=180°∵∴∠C′CA=70°∵△ABC旋转得到△AB′C′∴AC=AC′∴∠ACC′=∠AC′C=70°∴∠BAC′=180°-70°=110°∴∠CAC′=40°∴∠BAB′=40°故选:B.【点睛】本题主要考查的是旋转的性质,旋转前后的图形是全等的,正确的掌握旋转的性质的解题的关键.9、D【分析】由m是方程x2-2006x+1=0的一个根,将x=m代入方程,得到关于m的等式,变形后代入所求式子中计算,即可求出值.【详解】解:∵m是方程x2-2006x+1=0的一个根,∴m2-2006m+1=0,即m2+1=2006m,m2=2006m−1,则=====2006+2=2008故选:D.【点睛】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.10、B【解析】试题分析:∵PC⊥x轴,PD⊥y轴,∴S矩形PCOD=4,S△AOC=S△BOD=×1=,∴四边形PAOB的面积=S矩形PCOD-S△AOC-S△BOD=4--=1.故选B.考点:反比例函数系数k的几何意义.11、B【解析】连接AO1,AO2,O1O2,BO1,推出△AO1O2是等边三角形,求得∠AO1B=120°,得到阴影部分的面积=-,得到空白部分的面积=+,于是得到结论.【详解】解:连接AO1,AO2,O1O2,BO1,则O1O2垂直平分AB
∴AO1=AO2=O1O2=BO1=1,
∴△AO1O2是等边三角形,
∴∠AO1O2=60°,AB=2AO1sin60°=
∴∠AO1B=120°,∴阴影部分的面积=2×()=-,
∴空白部分和阴影部分的面积和=2π-(-)=+,
∴骰子落在重叠区域(阴影部分)的概率大约为≈,
故选B.【点睛】此题考查了几何概率,扇形的面积,三角形的面积,正确的作出辅助线是解题的关键.12、D【解析】根据∆>0且k-1≥0列式求解即可.【详解】由题意得()2-4×1×(-1)>0且k-1≥0,解之得k≥1.故选D.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.二、填空题(每题4分,共24分)13、30或60【分析】射线与恰好有且只有一个公共点就是射线与相切,分两种情况画出图形,利用圆的切线的性质和30°角的直角三角形的性质求出旋转角,然后根据旋转速度=旋转的度数÷时间即得答案.【详解】解:如图1,当射线与在射线BA上方相切时,符合题意,设切点为C,连接OC,则OC⊥BP,于是,在直角△BOC中,∵BO=2,OC=1,∴∠OBC=30°,∴∠1=60°,此时射线旋转的速度为每秒60°÷2=30°;如图2,当射线与在射线BA下方相切时,也符合题意,设切点为D,连接OD,则OD⊥BP,于是,在直角△BOD中,∵BO=2,OD=1,∴∠OBD=30°,∴∠MBP=120°,此时射线旋转的速度为每秒120°÷2=60°;故答案为:30或60.【点睛】本题考查了圆的切线的性质、30°角的直角三角形的性质和旋转的有关概念,正确理解题意、熟练掌握基本知识是解题的关键.14、1【分析】根据白球的概率公式列出方程求解即可.【详解】解:不透明的布袋中的球除颜色不同外,其余均相同,共有(n+4)个球,其中白球4个,根据概率公式知:P(白球)=,解得:n=1,故答案为:1.【点睛】此题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P.15、y=x2-1(答案不唯一).【解析】试题分析:抛物线开口向上,二次项系数大于0,然后写出即可.抛物线的解析式为y=x2﹣1.考点:二次函数的性质.16、或【分析】如图所示,分两种情况,利用特殊角的三角函数值求出的度数,利用勾股定理求出所求即可.【详解】当为钝角时,如图所示,在中,,,,根据勾股定理得:,即,;当为锐角时,如图所示,在中,,,,设,则有,根据勾股定理得:,解得:,则,故答案为或【点睛】此题属于解直角三角形题型,涉及的知识有:等腰三角形的性质,勾股定理,以及特殊角的三角函数值,熟练掌握直角三角形的性质及分类的求解的数学思想是解本题的关键.17、25【分析】如下图,先分析常春藤一圈展开图,求得常春藤一圈的长度后,再求总长度.【详解】如下图,是常春藤恰好绕树的图形∵绕5圈,藤尖离地面20米∴常春藤每绕1圈,对应的高度为20÷5=4米我们将绕树干1圈的图形展开如下,其中,AB表示树干一圈的长度,AC表示常春藤绕树干1圈的高度,BC表示常春藤绕树干一圈的长度∴在Rt△ABC中,BC=5∴常春藤总长度为:5×5=25米故答案为:25【点睛】本题考查侧面展开图的运算,解题关键是将题干中的树干展开为如上图△ABC的形式.18、0〈x〈1或x〈-2【分析】利用一次函数图象和反比例函数图象性质数形结合解不等式:【详解】解:a+1=-1,a=-2,由函数图象与不等式的关系知,0<x<1或x<-2.故答案为0<x<1或x<-2.三、解答题(共78分)19、(1)图见解析,概率为;(2)不公平,理由见解析【分析】(1)首先根据题意画出树状图,由树状图求得所有等可能的结果与两指针所指数字之和和小于4的情况,则可求得小颖参加比赛的概率;(2)根据小颖获胜与小亮获胜的概率,比较概率是否相等,即可判定游戏是否公平.【详解】(1)画树状图得:∵共有12种等可能的结果,所指数字之和小于4的有3种情况,∴P(和小于4)==,∴小颖参加比赛的概率为:;(2)不公平,∵P(小颖)=,P(小亮)=.∴P(和小于4)≠P(和大于等于4),∴游戏不公平.【点睛】此题主要考查概率的求解,解题的关键是根据题意画出树状图进行求解.20、(1),;(2),.【分析】(1)把原方程化成一元二次方程的一般形式,利用公式法解方程即可;(2)按照平方差公式展开、合并,再利用十字相乘法解方程即可.【详解】(1)整理得:,∵,∴,∴,∴,.(2)整理得:,∴,∴x+4=0或x-2=0,解得:,.【点睛】本题考查解一元二次方程,一元二次方程的常用解法有:直接开平方法、配方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.21、大树的高约为6.0米.【分析】作CM⊥DB于点M,已知BC的坡度即可得到BM和CM的比值,在Rt△MBC中,利用勾股定理即可求得BM和MC的长度,再在Rt△DCM中利用三角函数求得DM的长,由BD=BM+DM即可求得大树BD的高.【详解】作CM⊥DB于点M,∵斜坡AF的坡度是1::2.4,∠A=∠BCM,∴==,∴在直角△MBC中,设BM=5x,则CM=12x.由勾股定理可得:BM2+CM2=BC2,∴(5x)2+(12x)2=6.52,解得:x=,∴BM=5x=,CM=12x=6,在直角△MDC中,∠DCM=∠EDG=30°,∴DM=CM•tan∠DCM=6tan30°=6×=2,∴BD=DM+BM=+2≈2.5+2×1.732≈6.0(米).答:大树的高约为6.0米.【点睛】本题考查了解直角三角形的应用,正确作出辅助线,构造直角三角形模型是解决问题的关键.22、见解析.【分析】根据角平分线的性质、线段的垂直平分线的性质即可解决问题.【详解】∵点P在∠ABC的平分线上,∴点P到∠ABC两边的距离相等(角平分线上的点到角的两边距离相等),∵点P在线段BD的垂直平分线上,∴PB=PD(线段的垂直平分线上的点到线段的两个端点的距离相等),如图所示:【点睛】本题考查作图﹣复杂作图、角平分线的性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.23、(1);(2)(,0)或【分析】(1)把A点坐标代入直线解析式可求得n的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;(2)设P(x,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于x的方程,解方程可求得P点的坐标.【详解】解:(1)把A(2,n)代入直线解析式得:n=3,∴A(2,3),把A坐标代入y=,得k=6,则双曲线解析式为y=.(2)对于直线y=x+2,令y=0,得到x=-4,即C(-4,0).设P(x,0),可得PC=|x+4|.∵△ACP面积为5,∴|x+4|•3=5,即|x+4|=2,解得:x=-或x=-,则P坐标为或.24、(1)y=x2﹣2x﹣3,点A、B的坐标分别为:(﹣1,0)、(3,0);(2)存在,点P(1+,﹣);(3)故S有最大值为,此时点P(,﹣).【分析】(1)根据题意得到函数的对称轴为:x=﹣=1,解出b=﹣2,即可求解;(2)四边形POP′C为菱形,则yP=﹣OC=﹣,即可求解;(3)过点P作PH∥y轴交BC于点P,由点B、C的坐标得到直线BC的表达式,设点P(x,x2﹣2x﹣3),则点H(x,x﹣3),再根据ABPC的面积S=S△ABC+S△BCP即可求解.【详解】(1)函数的对称轴为:x=﹣=1,解得:b=﹣2,∴y=x2﹣2x+c,再将点C(0,﹣3)代入得到c=-3,,∴抛物线的表达式为:y=x2﹣2x﹣3,令y=0,则x=﹣1或3,故点A、B的坐标分别为:(﹣1,0)、(3,0);(2)存在,理由:如图1,四边形POP′C为菱形,则yP=﹣OC=﹣,即y=x2﹣2x﹣3=﹣,解得:x=1(舍去负值),故点P(1+,﹣);(3)过点P作PH∥y轴交BC于点P,由点B、C的坐标得到直线BC的表达式为:y=x﹣3,设点P(x,x2﹣2x﹣3),则点H(x,x﹣3),ABPC的面积S=S△ABC+S△BCP=×AB×OC+×PH×OB=×4×3+×3×(x﹣3﹣x2+2x+3)=﹣x2+x+6,=∵-<0,∴当x=时,S有最大值为,此时点P(,﹣).【点睛】此题是一道二次函数的综合题,考查待定系数法求函数解析式,图象与坐标轴的交点,翻折的性质,菱形的性质,利用函数解析式确定最大值,(3)是此题的难点,利用分割法求四边形的面积是解题的关键.25、(1)y=;(2)W=;(3)这种商品的销售单价定为65元时,月利润最大,最大月利润是1.【分析】(1)当40≤x≤60时,设y与x之间的函数关系式为y=kx+b,当60<x≤90时,设y与x之间的函数关系式为y=mx+n,解方程组即可得到结论;(2)当40≤x≤60时,当60<x≤90时,根据题意即可得到函数解析式;(3)当40≤x≤60时,W=-x2+210x-5400,得到当x=60时,W最大=-602+210×60-5400=3600,当60<x≤90时,W=-3x2+390x-9000,得到当x=65时,W最大=-3×652+390×65-9000=1,于是得到结论.【详解】解:(1)当40≤x≤60时,设y与x之间的函数关系式为y=kx+b,将(40,140),(60,120)代入得,解得:,∴y与x之间的函数关系式为y=﹣x+180;当60<x≤90时,设y与x之间的函数关系式为y=mx+n,将(90,30),(60,120)代入得,解得:,∴y=﹣3x+300;综上所述,y=;(2)当40≤x≤60时,W=(x﹣30)y=(x﹣30)(﹣x+180)=﹣x2+210x﹣5400,当60<x≤90时,W=(x﹣30)(﹣3x+300)=﹣3x2+390x﹣9000,综上所述,W=;(3)当40≤x≤60时,W=﹣x2+210x﹣5400,∵﹣1<0,对称轴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2.2基础的埋置深度及影响因67课件讲解
- 《实践教育基地建设》课件
- 护理课时说课教育课件
- 《多肉植物介绍》课件
- 维修保养管理制度6篇
- 纺织材料学教学课件下载样章
- 油库出入库管理制度(5篇)
- 《电子商务II复习》课件
- ABB工业机器人应用技术 故障诊断与维护 课件任务3-3 工业机器人紧凑型控制柜的周期维护
- 外墙维修安全协议书(2篇)
- 质量管理题库
- 2024年部编版七年级上册语文期末专项训练:文言文对比阅读
- 2024-2030年智能交通项目可行性研究报告
- gpu算力租赁合同
- 软件系统运行维护流程及的方案
- 医师定期考核 (公共卫生)试题库500题(含答案)
- 人教版(2012)音乐一年级上册国旗国旗真美丽 说课教案
- 国际经济学智慧树知到期末考试答案章节答案2024年河南大学
- 学校课题结题报告会活动方案
- 《食品化学》课件-3 水分活度和等温吸湿曲线
- 外委单位安全管理制度
评论
0/150
提交评论