版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省东莞市可园中学2025届九上数学期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,点是的边上的一点,若添加一个条件,使与相似,则下列所添加的条件错误的是()A. B. C. D.2.定义A*B,B*C,C*D,D*B分别对应图形①、②、③、④:那么下列图形中,可以表示A*D,A*C的分别是()A.(1),(2) B.(2),(4) C.(2),(3) D.(1),(4)3.如图所示的工件的主视图是()A. B. C. D.4.二次函数y=ax2+bx+c(a≠1)的图象如图所示,其对称轴为直线x=﹣1,与x轴的交点为(x1,1)、(x2,1),其中1<x2<1,有下列结论:①b2﹣4ac>1;②4a﹣2b+c>﹣1;③﹣3<x1<﹣2;④当m为任意实数时,a﹣b≤am2+bm;⑤3a+c=1.其中,正确的结论有()A.①③④ B.①②④ C.③④⑤ D.①③⑤5.已知,当﹣1≤x≤2时,二次函数y=m(x﹣1)2﹣5m+1(m≠0,m为常数)有最小值6,则m的值为()A.﹣5 B.﹣1 C.﹣1.25 D.16.已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A.30° B.60° C.30°或150° D.60°或120°7.抛物线与坐标轴的交点个数是()A.3 B.2 C.1 D.08.以下、、、四个三角形中,与左图中的三角形相似的是()A. B. C. D.9.如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是()A.25° B.40° C.50° D.65°10.《九章算术》中有一题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为步,股(长直角边)长为步,问该直角三角形能容纳的圆形(内切圆)直径是()A.步 B.步 C.步 D.步二、填空题(每小题3分,共24分)11.从地面竖直向上抛出一小球,小球离地面的高度h(米)与小球运动时间t(秒)之间关系是h=30t﹣5t2(0≤t≤6),则小球从抛出后运动4秒共运动的路径长是________米.12.如图,在正方形中,,将绕点顺时针旋转得到,此时与交于点,则的长度为___________.13.当_____时,是关于的一元二次方程.14.已知反比例函数y=的图象位于第一、第三象限,则k的取值范围是_____.15.如图抛物线y=x2+2x﹣3与x轴交于A,B两点,与y轴交于点C,点P是抛物线对称轴上任意一点,若点D、E、F分别是BC、BP、PC的中点,连接DE,DF,则DE+DF的最小值为_____.16.如图,在⊙O内有折线DABC,点B,C在⊙O上,DA过圆心O,其中OA=8,AB=12,∠A=∠B=60°,则BC=_____.17.某企业2017年全年收入720万元,2019年全年收入845万元,若设该企业全年收入的年平均增长率为x,则可列方程____.18.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径,扇形的圆心角,则该圆锥的母线长为___.三、解答题(共66分)19.(10分)如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE.(Ⅰ)求证:∠A=∠EBC;(Ⅱ)若已知旋转角为50°,∠ACE=130°,求∠CED和∠BDE的度数.20.(6分)请画出下面几何体的三视图21.(6分)某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.(1)根据图示填写下表:班级中位数(分)众数(分)九(1)85九(2)100(2)通过计算得知九(2)班的平均成绩为85分,请计算九(1)班的平均成绩.(3)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好.(4)已知九(1)班复赛成绩的方差是70,请计算九(2)班的复赛成绩的方差,并说明哪个班的成绩比较稳定?22.(8分)元旦放假期间,小明和小华准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.(1)求小明选择去白鹿原游玩的概率;(2)用树状图或列表的方法求小明和小华都选择去秦岭国家植物园游玩的概率.23.(8分)已知抛物线y=ax2+bx+c经过点A(﹣2,0),B(3,0),与y轴负半轴交于点C,且OC=OB.(1)求抛物线的解析式;(2)在y轴负半轴上存在一点D,使∠CBD=∠ADC,求点D的坐标;(3)点D关于直线BC的对称点为D′,将抛物线y=ax2+bx+c向下平移h个单位,与线段DD′只有一个交点,直接写出h的取值范围.24.(8分)如图,已知一次函数y=ax+b(a,b为常数,a≠0)的图象与x轴,y轴分别交于点A,B,且与反比例函数(k为常数,k≠0)的图象在第二象限内交于点C,作CD⊥x轴于D,若OA=OD=OB=1.(1)求一次函数与反比例函数的解析式;(2)观察图象直接写出不等式0<ax+b≤的解集;(1)在y轴上是否存在点P,使得△PBC是以BC为一腰的等腰三角形?如果存在,请直接写出P点的坐标;如果不存在,请简要说明理由25.(10分)已知,在平面直角坐标系中,二次函数的图象与轴交于点,与轴交于点,点的坐标为,点的坐标为.
(1)如图1,分别求的值;(2)如图2,点为第一象限的抛物线上一点,连接并延长交抛物线于点,,求点的坐标;(3)在(2)的条件下,点为第一象限的抛物线上一点,过点作轴于点,连接、,点为第二象限的抛物线上一点,且点与点关于抛物线的对称轴对称,连接,设,,点为线段上一点,点为第三象限的抛物线上一点,分别连接,满足,,过点作的平行线,交轴于点,求直线的解析式.26.(10分)如图,一次函数的图象与反比例函数的图象相交于点,两点,与,轴分别交于,两点.(1)求一次函数的表达式;(2)求的面积.
参考答案一、选择题(每小题3分,共30分)1、D【分析】在与中,已知有一对公共角∠B,只需再添加一组对应角相等,或夹已知等角的两组对应边成比例,即可判断正误.【详解】A.已知∠B=∠B,若,则可以证明两三角形相似,正确,不符合题意;B.已知∠B=∠B,若,则可以证明两三角形相似,正确,不符合题意;C.已知∠B=∠B,若,则可以证明两三角形相似,正确,不符合题意;D.若,但夹的角不是公共等角∠B,则不能证明两三角形相似,错误,符合题意,故选:D.【点睛】本题考查相似三角形的判定,熟练掌握相似三角形的判定条件是解答的关键.2、B【分析】先判断出算式中A、B、C、D表示的图形,然后再求解A*D,A*C.【详解】∵A*B,B*C,C*D,D*B分别对应图形①、②、③、④可得出A对应竖线、B对应大正方形、C对应横线,D对应小正方形∴A*D为竖线和小正方形组合,即(2)A*C为竖线和横线的组合,即(4)故选:B【点睛】本题考查归纳总结,解题关键是根据已知条件,得出A、B、C、D分别代表的图形.3、B【解析】从物体正面看,看到的是一个横放的矩形,且一条斜线将其分成一个直角梯形和一个直角三角形.故选B.4、A【分析】根据函数图象和二次函数的性质,可以判断各个小题中的结论是否成立,本题得以解决.【详解】∵二次函数y=ax2+bx+c(a≠1)的图象与x轴有两个交点,∴b2﹣4ac>1,故①正确;∵该函数图象的对称轴是x=﹣1,当x=1时的函数值小于﹣1,∴x=﹣2时的函数值和x=1时的函数值相等,都小于﹣1,∴4a﹣2b+c<﹣1,故②错误;∵该函数图象的对称轴是x=﹣1,与x轴的交点为(x1,1)、(x2,1),其中1<x2<1,∴﹣3<x,1<﹣2,故③正确;∵当x=﹣1时,该函数取得最小值,∴当m为任意实数时,a﹣b≤am2+bm,故④正确;∵1,∴b=2a.∵x=1时,y=a+b+c>1,∴3a+c>1,故⑤错误.故选:A.【点睛】本题考查了二次函数图象上点的坐标特征、二次函数图象与系数的关系、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.5、A【分析】根据题意,分情况讨论:当二次函数开口向上时,在对称轴上取得最小值,列出关于m的一次方程求解即可;当二次函数开口向下时,在x=-1时取得最小值,求解关于m的一次方程即可,最后结合条件得出m的值.【详解】解:∵当﹣1≤x≤2时,二次函数y=m(x﹣1)2﹣5m+1(m≠0,m为常数)有最小值6,∴m>0,当x=1时,该函数取得最小值,即﹣5m+1=6,得m=﹣1(舍去),m<0时,当x=﹣1时,取得最小值,即m(﹣1﹣1)2﹣5m+1=6,得m=﹣5,由上可得,m的值是﹣5,故选:A.【点睛】本题考查了二次函数的最值问题,注意根据开口方向分情况讨论,一次方程的列式求解,分情况讨论是解题的关键.6、D【解析】由图可知,OA=10,OD=1.根据特殊角的三角函数值求出∠AOB的度数,再根据圆周定理求出∠C的度数,再根据圆内接四边形的性质求出∠E的度数即可.【详解】由图可知,OA=10,OD=1,在Rt△OAD中,∵OA=10,OD=1,AD==,∴tan∠1=,∴∠1=60°,同理可得∠2=60°,∴∠AOB=∠1+∠2=60°+60°=120°,∴∠C=60°,∴∠E=180°-60°=120°,即弦AB所对的圆周角的度数是60°或120°,故选D.【点睛】本题考查了圆周角定理、圆内接四边形的对角互补、解直角三角形的应用等,正确画出图形,熟练应用相关知识是解题的关键.7、A【详解】解:∵抛物线解析式,令,解得:,∴抛物线与轴的交点为(0,4),令,得到,∴抛物线与轴的交点分别为(,0),(1,0).综上,抛物线与坐标轴的交点个数为1.故选A.【点睛】本题考查抛物线与轴的交点,解一元一次、二次方程.8、B【分析】由于已知三角形和选择项的三角形都放在小正方形的网格中,设正方形的边长为1,所以每一个三角形的边长都是可以表示出,然后根据三角形的对应边成比例即可判定选择项.【详解】设小正方形的边长为1,根据勾股定理,所给图形的边分别为,,,所以三边之比为A、三角形的三边分别为、、,三边之比为::,故本选项错误;B、三角形的三边分别为、、,三边之比为,故本选项正确;C、三角形的三边分别为、、,三边之比为,故本选项错误;
D、三角形的三边分别为、、,三边之比为,故本选项错误.
故选:B.【点睛】本题考查了相似三角形的判定,勾股定理的应用,熟练掌握网格结构,观察出所给图形的直角三角形的特点是解题的关键.9、B【分析】首先连接OC,由∠A=25°,可求得∠BOC的度数,由CD是圆O的切线,可得OC⊥CD,继而求得答案.【详解】连接OC,∵圆O是Rt△ABC的外接圆,∠ACB=90°,∴AB是直径,∵∠A=25°,∴∠BOC=2∠A=50°,∵CD是圆O的切线,∴OC⊥CD,∴∠D=90°-∠BOC=40°.故选B.10、A【分析】根据勾股定理求出直角三角形的斜边,即可确定出内切圆半径,进而得出直径.【详解】根据勾股定理,得斜边为,则该直角三角形能容纳的圆形(内切圆)半径(步),即直径为6步,故答案为A.【点睛】此题主要考查了三角形的内切圆与内心,熟练掌握,即可解题.二、填空题(每小题3分,共24分)11、1【分析】根据题目中的函数解析式可以求得h的最大值,从而可以求得小球从抛出后运动4秒共运动的路径长.【详解】解:∵h=30t−5t2=−5(t−3)2+45(0≤t≤6),∴当t=3时,h取得最大值,此时h=45,∴小球从抛出后运动4秒共运动的路径长是:45+[45−(30×4−5×42)]=1(米),故答案为1.【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的路径的长.12、【分析】利用正方形和旋转的性质得出A′D=A′E,进而利用勾股定理得出BD的长,进而利用锐角三角函数关系得出DE的长即可.【详解】解:由题意可得出:∠BDC=45°,∠DA′E=90°,
∴∠DEA′=45°,
∴A′D=A′E,
∵在正方形ABCD中,AD=1,
∴AB=A′B=1,
∴BD=,
∴A′D=,
∴在Rt△DA′E中,DE=.故答案为:.【点睛】此题主要考查了正方形和旋转的性质以及勾股定理、锐角三角函数关系等知识,得出A′D的长是解题关键.13、【分析】根据一元二次方程的定义得到m−1≠0,解不等式即可.【详解】解:∵方程是关于x的一元二次方程,
∴m−1≠0,
∴m≠1,故答案为:.【点睛】本题考查了一元二次方程的定义:只含有一个未知数,并且未知数的最高次数为2的整式方程叫一元二次方程.14、.【解析】分析:根据“反比例函数的图象所处象限与的关系”进行解答即可.详解:∵反比例函数的图象在第一、三象限内,∴,解得:.故答案为.点睛:熟记“反比例函数的图象所处象限与的关系:(1)当时,反比例函数的图象在第一、三象限;(2)当时,反比例函数的图象在第二、四象限.”是正确解答本题的关键.15、【解析】连接AC,与对称轴交于点P,此时DE+DF最小,求解即可.【详解】连接AC,与对称轴交于点P,此时DE+DF最小,点D、E、F分别是BC、BP、PC的中点,在二次函数y=x2+2x﹣3中,当时,当时,或即点P是抛物线对称轴上任意一点,则PA=PB,PA+PC=AC,PB+PC=DE+DF的最小值为:故答案为【点睛】考查二次函数图象上点的坐标特征,三角形的中位线,勾股定理等知识点,找出点P的位置是解题的关键.16、1【分析】作OE⊥BC于E,连接OB,根据∠A、∠B的度数易证得△ABD是等边三角形,由此可求出OD、BD的长,设垂足为E,在Rt△ODE中,根据OD的长及∠ODE的度数易求得DE的长,进而可求出BE的长,由垂径定理知BC=2BE即可得出答案.【详解】作OE⊥BC于E,连接OB.∵∠A=∠B=60°,∴∠ADB=60°,∴△ADB为等边三角形,∴BD=AD=AB=12,∵OA=8,∴OD=4,又∵∠ADB=60°,∴DE=OD=2,∴BE=12﹣2=10,由垂径定理得BC=2BE=1故答案为:1.【点睛】本题考查了圆中的弦长计算,熟练掌握垂径定理,作出辅助线构造直角三角形是解题的关键.17、720(1+x)2=1.【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果该企业全年收入的年平均增长率为x,根据2017年全年收入720万元,2019年全年收入1万元,即可得出方程.【详解】解:设该企业全年收入的年平均增长率为x,则2018的全年收入为:720×(1+x)2019的全年收入为:720×(1+x)2.那么可得方程:720(1+x)2=1.故答案为:720(1+x)2=1.【点睛】本题考查了一元二次方程的运用,解此类题的关键是掌握等量关系式:增长后的量=增长前的量×(1+增长率).18、6.【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长cm,设圆锥的母线长为,则:,解得,故答案为.【点睛】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为:.三、解答题(共66分)19、(Ⅰ)证明见解析;(Ⅱ)∠BDE=50°,∠CED=35°【分析】(Ⅰ)由旋转的性质可得AC=CD,CB=CE,∠ACD=∠BCE,由等腰三角形的性质可求解.(Ⅱ)由旋转的性质可得AC=CD,∠ABC=∠DEC,∠ACD=∠BCE=50°,∠EDC=∠A,由三角形内角和定理和等腰三角形的性质可求解.【详解】证明:(Ⅰ)∵将△ABC绕点C顺时针旋转得到△DEC,∴AC=CD,CB=CE,∠ACD=∠BCE,∴∠A=,∠CBE=,∴∠A=∠EBC;(Ⅱ)∵将△ABC绕点C顺时针旋转得到△DEC,∴AC=CD,∠ABC=∠DEC,∠ACD=∠BCE=50°,∠EDC=∠A,∠ACB=∠DCE∴∠A=∠ADC=65°,∵∠ACE=130°,∠ACD=∠BCE=50°,∴∠ACB=∠DCE=80°,∴∠ABC=180°﹣∠BAC﹣∠BCA=35°,∵∠EDC=∠A=65°,∴∠BDE=180°﹣∠ADC﹣∠CDE=50°.∠CED=180°﹣∠DCE﹣∠CDE=35°【点睛】本题主要考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.20、详见解析.【分析】根据几何体分别画出从正面,上面和左面看到的图形即可.【详解】如图所示:主视图左视图俯视图【点睛】本题主要考查几何体的三视图,掌握三视图的画法是解题的关键.21、(1)见解析;(2)85分;(3)九(1)班成绩好;(4)九(1)班成绩稳定.【解析】(1)观察图分别写出九(1)班和九(2)班5名选手的复赛成绩,然后根据中位数的定义和平均数的求法以及众数的定义求解即可;
(2)根据平均数计算即可;
(3)在平均数相同的情况下,中位数高的成绩较好;
(4)先根据方差公式分别计算两个班复赛成绩的方差,再根据方差的意义判断即可.【详解】解:(1)填表:班级中位数(分)众数(分)九(1)8585九(2)80100(2)=85答:九(1)班的平均成绩为85分(3)九(1)班成绩好些因为两个班级的平均数都相同,九(1)班的中位数高,所以在平均数相同的情况下中位数高的九(1)班成绩好.(4)S21班=[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70,S22班=[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160,因为160>70所以九(1)班成绩稳定.【点睛】考查了平均数、中位数、众数和方差的意义即运用.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.22、(1);(2)【分析】(1)利用概率公式直接计算即可;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小华都选择去同一个地方游玩的情况,再利用概率公式即可求得答案.【详解】(1)∵小明准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,∴小明选择去白鹿原游玩的概率=;(2)画树状图分析如下:两人选择的方案共有16种等可能的结果,其中选择同种方案有1种,所以小明和小华都选择去秦岭国家植物园游玩的概率=.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.23、(1)y=x2﹣x﹣3;(2)D(0,﹣6);(3)3≤h≤1【分析】(1)OC=OB,则点C(0,﹣3),抛物线的表达式为:y=a(x+2)(x﹣3)=a(x2﹣x﹣6),﹣6a=﹣3,解得:a=,即可求解;(2)CH=HD=m,tan∠ADC==tan∠DBC=,解得:m=3或﹣4(舍去﹣4),即可求解;(3)过点C作x轴的平行线交DH的延长线于点D′,则D′(﹣3,﹣3);当平移后的抛物线过点C时,抛物线与线段DD′有一个公共点,此时,h=3;当平移后的抛物线过点D′时,抛物线与线段DD′有一个公共点,即可求解.【详解】解:(1)OC=OB,则点C(0,﹣3),抛物线的表达式为:y=a(x+2)(x﹣3)=a(x2﹣x﹣6),﹣6a=﹣3,解得:a=,故抛物线的表达式为:y=x2﹣x﹣3;(2)设CD=m,过点D作DH⊥BC交BC的延长线于点H,则CH=HD=m,tan∠ADC==tan∠DBC=,解得:m=3或﹣4(舍去﹣4),故点D(0,﹣6);(3)过点C作x轴的平行线交DH的延长线于点D′,则D′(﹣3,﹣3);平移后抛物线的表达式为:y=x2﹣x﹣3﹣h,当平移后的抛物线过点C时,抛物线与线段DD′有一个公共点,此时,h=3;当平移后的抛物线过点D′时,抛物线与线段DD′有一个公共点,即﹣3=×9+﹣h,解得:h=1,故3≤h≤1.【点睛】此题主要考查二次函数综合,解题的关键是熟知待定系数法求解析式、三角函数的定义及二次函数平移的特点.24、(1);(2)-1≤x<0;(1)存在满足条件的点P,其坐标为(0,-1)或(0,9)或(0,12)【分析】(1)根据平行线分线段成比例性质可得,求出A(1,0),B(0,4),C(-1,8),再用待定系数法求解;(2)由题意可知所求不等式的解集即为直线AC在x轴上方且在反比例函数图象下方的图象所对应的自变量的取值范围:0<-x+4≤-;(1)△PBC是以BC为一腰的等腰三角形,有BC=BP或BC=PC两种情况.【详解】解:(1)∵CD⊥OA,∴DC∥OB,∴,∴CD=2OB=8,∵OA=OD=OB=1,∴A(1,0),B(0,4),C(-1,8),把A、B两点的坐标分别代入y=ax+b可得,解得,∴一次函数解析式为,∵反比例函数y=的图象经过点C,∴k=-24,∴反比例函数的解析式为y=-(2)由题意可知所求不等式的解集即为直线AC在x轴上方且在反比例函数图象下方的图象所对应的自变量的取值范围,即线段BC(包含C点,不包含B点)所对应的自变量x的取值范围,∵C(-1,8),∴0<-x+4≤-的解集为-1≤x<0(1)∵B(0,4),C(-1,8),∴BC=5,∵△PBC是以BC为一腰的等腰三角形,∴有BC=BP或BC=PC两种情况,①当BC=BP时,即BP=5,∴OP=BP+OB=4+5=9,或OP=BP-OB=5-4=1,∴P点坐标为(0,9)或(0,-1);②当BC=PC时,则点C在线段BP的垂直平分线上,∴线段BP的中点坐标为(0,8),∴P点坐标为(0,12);综上可知存在满足条件的点P,其坐标为(0,-1)或(0,9)或(0,12)【点睛】考核知识点:相似三角形,反比例函数.数形结合分类讨论是关键.25、(1),;(2);(3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 雅安市高2022级(2025届)高三“零诊”考试 语文试卷(含标准答案)
- 养老护理员初级培训
- 中考数学二轮复习专项选择题题组集训二课件
- 防疫培训幼儿园
- 2024-2025学年贵州省六盘水市水城区高二上学期期中质量监测数学试卷(含答案)
- T-ZFDSA 20-2024 蜂蜜蒸梨制作标准
- 山东省菏泽市郓城一中2024-2025学年九年级上学期第一次月考数学试题
- 03Z028安全环保部安全管理员工作标准
- 人教版六年级语文下册两小儿辩日
- 高中语文第5单元散而不乱气脉中贯3祭十二郞文课件新人教版选修中国古代诗歌散文欣赏
- 桥梁冬季施工方案及措施
- 职高数学《等差数列》试卷试题
- 急性胸痛的急诊处理ppt课件
- 砂矿采样规范手册.docx
- 实验检测生物组织中的糖类脂肪和蛋白质PPT课件
- 聚乙烯PE管道施工方案完整
- 流动资金贷款需求量测算参考计算表(XLS12)
- 西师大版六年级数学上册期中测试卷(附答案)
- 岗位价值评估方法(共15页)
- 202X年妇联赴外出学习考察心得体会.doc
- suzuki偶联反应(课堂PPT)
评论
0/150
提交评论