版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖北省黄冈市九上数学期末联考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有()A.5个 B.15个 C.20个 D.35个2.如图,边长为1的正方形ABCD中,点E在CB的延长线上,连接ED交AB于点F,AF=x(0.2≤x≤0.8),EC=y.则在下面函数图象中,大致能反映y与x之间函数关系的是()A. B.C. D.3.在一个不透明的布袋中装有40个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.30左右,则布袋中黄球可能有()A.12个 B.14个 C.18个 D.28个4.如图,在△ABC中,D,E分别是AB和AC上的点,且DE∥BC,,DE=6,则BC的长为()A.8 B.9 C.10 D.125.如图,AB与CD相交于点E,点F在线段BC上,且AC//EF//DB,若BE=5,BF=3,AE=BC,则的值为()A. B. C. D.6.如图,在同一平面直角坐标系中,反比例函数与一次函数y=kx−1(k为常数,且k≠0)的图象可能是()A. B. C. D.7.一元二次方程x²-4x-1=0配方可化为()A.(x+2)²=3 B.(x+2)²=5 C.(x-2)²=3 D.(x-2)²=58.在Rt△ABC中,∠C=90°,∠B=35°,AB=3,则BC的长为()A.3sin35° B. C.3cos35° D.3tan35°9.如图,是的中位线,则的值为()A. B. C. D.10.下列四个点,在反比例函数y=图象上的是(
)A.(1,-6) B.(2,4) C.(3,-2) D.(-6,-1)11.如右图,在的正方形网格中,每个小正方形的边长都是1,的顶点都在格点上,则的值为()A. B. C. D.12.抛物线经过平移得到抛物线,平移过程正确的是()A.先向下平移个单位,再向左平移个单位B.先向上平移个单位,再向右平移个单位C.先向下平移个单位,再向右平移个单位D.先向上平移个单位,再向左平移个单位.二、填空题(每题4分,共24分)13.如果关于x的方程x2﹣5x+k=0没有实数根,那么k的值为________14.若方程有两个相等的实数根,则m=________.15.两同学玩扔纸团游戏,在操场上固定了如下图所示的矩形纸板,E为AD中点,且∠ABD=60°,每次纸团均落在纸板上,则纸团击中阴影区域的概率是________.16.如图,把直角三角板的直角顶点放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点、.量得,,则该圆玻璃镜的半径是__________.17.数学学习应经历“观察、实验、猜想、证明”等过程.下表是几位数学家“抛掷硬币”的实验数据:实验者棣莫弗蒲丰德·摩根费勒皮尔逊罗曼诺夫斯基掷币次数204840406140100003600080640出现“正面朝上”的次数10612048310949791803139699频率0.5180.5070.5060.4980.5010.492请根据以上实验数据,估计硬币出现“正面朝上”的概率为__________.(精确到0.1)18.如图,已知正方形ABCD的边长为1,点M是BC边上的动点(不与B,C重合),点N是AM的中点,过点N作EF⊥AM,分别交AB,BD,CD于点E,K,F,设BM=x.(1)AE的长为______(用含x的代数式表示);(2)设EK=2KF,则的值为______.三、解答题(共78分)19.(8分)如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为1,求图中阴影部分的面积(结果保留π).20.(8分)为了丰富校园文化生活,提高学生的综合素质,促进中学生全面发展,学校开展了多种社团活动.小明喜欢的社团有:合唱社团、足球社团、书法社团、科技社团(分别用字母A,B,C,D依次表示这四个社团),并把这四个字母分别写在四张完全相同的不透明的卡片的正面上,然后将这四张卡片背面朝上洗匀后放在桌面上.(1)小明从中随机抽取一张卡片是足球社团B的概率是.(2)小明先从中随机抽取一张卡片,记录下卡片上的字母后不放回,再从剩余的卡片中随机抽取一张卡片,记录下卡片上的字母.请你用列表法或画树状图法求出小明两次抽取的卡片中有一张是科技社团D的概率.21.(8分)解方程:x2﹣6x﹣7=1.22.(10分)如图,在△ABC中,AB=4cm,AC=6cm.(1)作图:作BC边的垂直平分线分别交与AC,BC于点D,E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结BD,求△ABD的周长.23.(10分)求值:24.(10分)计算:25.(12分)一艘渔船在A处观测到东北方向有一小岛C,已知小岛C周围4.8海里范围内是水产养殖场.渔船沿北偏东30°方向航行10海里到达B处,在B处测得小岛C在北偏东60°方向,这时渔船改变航线向正东(即BD)方向航行,这艘渔船是否有进入养殖场的危险?26.如图,正方形ABCD的过长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD、BC交于点F、E,连接AE.(1)求证:AQ⊥DP;(2)求证:AO2=OD•OP;(3)当BP=1时,求QO的长度.
参考答案一、选择题(每题4分,共48分)1、A【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:设袋中白球有x个,根据题意得:=0.75,解得:x=5,经检验:x=5是分式方程的解,故袋中白球有5个.故选A.【点睛】此题考查了利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=是解题关键.2、C【分析】通过相似三角形△EFB∽△EDC的对应边成比例列出比例式,从而得到y与x之间函数关系式,从而推知该函数图象.【详解】根据题意知,BF=1﹣x,BE=y﹣1,∵AD//BC,∴△EFB∽△EDC,∴,即,∴y=(0.2≤x≤0.8),该函数图象是位于第一象限的双曲线的一部分.A、D的图象都是直线的一部分,B的图象是抛物线的一部分,C的图象是双曲线的一部分.故选C.3、A【分析】根据概率公式计算即可.【详解】解:设袋子中黄球有x个,根据题意,得:=0.30,解得:x=12,即布袋中黄球可能有12个,故选:A.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.4、C【解析】根据相似三角形的性质可得,再根据,DE=6,即可得出,进而得到BC长.【详解】∵DE∥BC,∴△ADE∽△ABC,∴,又∵,DE=6,∴,∴BC=10,故选:C.【点睛】本题主要考查了相似三角形的判定与性质的运用,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.5、A【分析】根据平行线分线段成比例定理得可求出BC的长,从而可得CF的长,再根据平行线分线段成比例定理得,求解即可得.【详解】又,解得又故选:A.【点睛】本题考查了平行线分线段成比例定理,根据定理求出BC的长是解题关键.6、B【分析】分k>0和k<0两种情况,分别判断反比例函数的图象所在象限及一次函数y=-kx-1的图象经过的象限.再对照四个选项即可得出结论.【详解】当k>0时,-k<0,
∴反比例函数的图象在第一、三象限,一次函数y=kx-1的图象经过第一、三、四象限;
当k<0时,-k>0,
∴反比例函数的图象在第二、四象限,一次函数y=kx-1的图象经过第二、三、四象限.
故选:B.【点睛】本题考查了反比例函数的图象与性质以及一次函数图象与性质,熟练掌握两种函数的性质并分情况讨论是解题的关键.7、D【分析】移项,配方,即可得出选项.【详解】x2−4x−1=0,x2−4x=1,x2−4x+4=1+4,(x−2)2=5,故选:D.【点睛】本题考查了解一元二次方程的应用,能正确配方是解此题的关键.8、C【分析】根据余弦定义求解即可.【详解】解:如图,∵∠C=90°,∠B=35°,AB=3,cos35°=,∴BC=3cos35°.故选:C.【点睛】本题考查了锐角三角函数,属于基础题型,熟练掌握余弦的定义是解此题的关键.9、B【分析】由中位线的性质得到DE∥AC,DE=AC,可知△BDE∽△BCA,再根据相似三角形面积比等于相似比的平方可得,从而得出的值.【详解】∵DE是△ABC的中位线,∴DE∥AC,DE=AC∴△BDE∽△BCA∴∴故选B.【点睛】本题考查了中位线的性质,以及相似三角形的判定与性质,解题的关键是掌握相似三角形的面积比等于相似比的平方.10、D【解析】由可得xy=6,故选D.11、A【分析】过作于,首先根据勾股定理求出,然后在中即可求出的值.【详解】如图,过作于,则,=1..故选:A.【点睛】本题考查了勾股定理的运用以及锐角三角函数,正确作出辅助线构造直角三角形是解题的关键.12、D【分析】先利用顶点式得到抛物线的顶点坐标为,抛物线的顶点坐标为,然后利用点平移的规律确定抛物线的平移情况.【详解】解:抛物线的顶点坐标为,抛物线的顶点坐标为,而点先向上平移2个单位,再向左平移3个单位后可得点,抛物线先向上平移2个单位,再向左平移3个单位后可得抛物线.故选:.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.二、填空题(每题4分,共24分)13、k>【解析】据题意可知方程没有实数根,则有△=b2-4ac<0,然后解得这个不等式求得k的取值范围即可.【详解】∵关于x的方程x2-5x+k=0没有实数根,∴△<0,即△=25-4k<0,∴k>,故答案为:k>.【点睛】本题主要考查了一元二次方程根的判别式(△=b2-4ac)判断方程的根的情况:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有:当△<0时,方程无实数根.基础题型比较简单.14、4【解析】∵方程x²−4x+m=0有两个相等的实数根,∴△=b²−4ac=16−4m=0,解之得,m=4故本题答案为:415、【分析】先根据矩形的性质求出矩形对角线所分的四个三角形面积相等,再根据E为AD中点得出S△ODES△OAD,进而求解即可.【详解】∵ABCD是矩形,∴S△AOD=S△AOB=S△BOC=S△CODS矩形纸板ABCD.又∵E为AD中点,∴S△ODES△OAD,∴S△ODES矩形纸板ABCD,∴纸团击中阴影区域的概率是.故答案为:.【点睛】本题考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比.16、1.【解析】解:∵∠MON=90°,∴为圆玻璃镜的直径,,∴半径为.故答案为:1.17、0.1【分析】由于表中硬币出现“正面朝上”的频率在0.1左右波动,则根据频率估计概率可得到硬币出现“正面朝上”的概率为0.1.【详解】解:因为表中硬币出现“正面朝上”的频率在0.1左右波动,
所以估计硬币出现“正面朝上”的概率为0.1.
故答案为0.1.【点睛】本题考查了利用频率估计概率,随实验次数的增多,值越来越精确.18、x【分析】(1)根据勾股定理求得AM,进而得出AN,证得△AEN∽△AMB,由相似三角形的性质即可求得AE的长;(2)连接AK、MG、CK,构建全等三角形和直角三角形,证明AK=MK=CK,再根据四边形的内角和定理得∠AKM=90°,利用直角三角形斜边上的中线等于斜边的一半得NK=AM=AN,然后根据相似三角形的性质求得==x,即可得出=x.【详解】(1)解:∵正方形ABCD的边长为1,BM=x,∴AM=,∵点N是AM的中点,∴AN=,∵EF⊥AM,∴∠ANE=90°,∴∠ANE=∠ABM=90°,∵∠EAN=∠MAB,∴△AEN∽△AMB,∴=,即=,∴AE=,故答案为:;(2)解:如图,连接AK、MG、CK,由正方形的轴对称性△ABK≌△CBK,∴AK=CK,∠KAB=∠KCB,∵EF⊥AM,N为AM中点,∴AK=MK,∴MK=CK,∠KMC=∠KCM,∴∠KAB=∠KMC,∵∠KMB+∠KMC=180°,∴∠KMB+∠KAB=180°,又∵四边形ABMK的内角和为360°,∠ABM=90°,∴∠AKM=90°,在Rt△AKM中,AM为斜边,N为AM的中点,∴KN=AM=AN,∴=,∵△AEN∽△AMB,∴==x,∴=x,故答案为:x.【点睛】本题是四边形的综合题,考查了正方形的性质,相似三角形的判定和性质,全等三角形判定和性质,等腰三角形的性质,以及直角三角形斜边.上的中线的性质,证得KN=
AN是解题的关键.三、解答题(共78分)19、(1)直线CD与⊙O相切(1)【解析】(1)直线CD与⊙O相切.如图,连接OD.∵OA=OD,∠DAB=45°,∴∠ODA=45°,∴∠AOD=90°.∵CD∥AB,∴∠ODC=∠AOD=90°,即OD⊥CD.又∵点D在⊙O上,直线CD与⊙O相切.(1)∵BC∥AD,CD∥AB,∴四边形ABCD是平行四边形,∴CD=AB=1.∴S梯形OBCD=,∴图中阴影部分的面积为S梯形OBCD-S扇形OBD=20、(1);(2)见解析,.【分析】(1)直接根据概率公式求解;(2)利用列表法展示所有12种等可能性结果,再找出小明两次抽取的卡片中有一张是科技社团D的结果数,然后根据概率公式求解.【详解】(1)小明从中随机抽取一张卡片是足球社团B的概率=;(2)列表如下:ABCDA(B,A)(C,A)(D,A)B(A,B)(C,B)(D,B)C(A,C)(B,C)(D,C)D(A,D)(B,D)(C,D)由表可知共有12种等可能结果,小明两次抽取的卡片中有一张是科技社团D的结果数为6种,所以小明两次抽取的卡片中有一张是科技社团D的概率为.【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率21、x2=7,x2=﹣2.【解析】观察原方程,可运用二次三项式的因式分解法进行求解.【详解】原方程可化为:(x﹣7)(x+2)=2,x﹣7=2或x+2=2;解得:x2=7,x2=﹣2.22、(1)详见解析;(2)10cm.【分析】(1)运用作垂直平分线的方法作图,(2)运用垂直平分线的性质得出BD=DC,利用△ABD的周长=AB+BD+AD=AB+AC即可求解.【详解】解:(1)如图1,(2)如图2,∵DE是BC边的垂直平分线,∴BD=DC,∵AB=4cm,AC=6cm.∴△ABD的周长=AB+BD+AD=AB+AC=4+6=10cm.【点睛】本题考查的是尺规作图以及线段垂直平分线的性质:线段垂直平分线上的点到线段两端的距离相等,23、2.【分析】先将三角函数值代入,再根据混合运算顺序依此计算可得.【详解】原式=【点睛】本题主要考查了特殊角的三角函数值,解题的关键是熟练掌握各特殊角的三角函数值.24、(1);(2).【分析】(1)根据二次根式混合运算法则计算即可;(2)根据有理数的乘方、零指数幂、特殊角的三角函数值、负整数指数幂、二次根式的化简计算即可.【详解】(1)原式;(2)原式.【点睛】本题考查了二次根式的混合运算、特殊角的三角函数值、负整数指数幂以及零指数幂,熟练掌握运算法则是解答本题的关键.25、渔船没有进入养殖场的危险.【解析】试题分析:点B作BM⊥AH于M,过点C作CN⊥AH于N,利用直角三角形的性质求得CK的长,若CK>4.8则没
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 雅安市高2022级(2025届)高三“零诊”考试 语文试卷(含标准答案)
- 养老护理员初级培训
- 中考数学二轮复习专项选择题题组集训二课件
- 防疫培训幼儿园
- 2024-2025学年贵州省六盘水市水城区高二上学期期中质量监测数学试卷(含答案)
- T-ZFDSA 20-2024 蜂蜜蒸梨制作标准
- 山东省菏泽市郓城一中2024-2025学年九年级上学期第一次月考数学试题
- 03Z028安全环保部安全管理员工作标准
- 人教版六年级语文下册两小儿辩日
- 高中语文第5单元散而不乱气脉中贯3祭十二郞文课件新人教版选修中国古代诗歌散文欣赏
- YS/T 73-2011副产品氧化锌
- GB/T 23858-2009检查井盖
- 工伤职工停工留薪期目录
- 2023年博雅学校雅思阅读模拟题及答案三ver.5
- 2高铁AB料路基填筑施工技术
- T-NTRPTA 0030-2020 无人机精准测绘技术规范
- 漏(中国民间故事)
- 工程制图与CAD2021年春学期期末考试试卷
- 骨科护理查房骨牵引病人护理实用课件
- 运动损伤的预防和处理 医学知识讲座
- 《新能源汽车故障诊断和维修研究(论文)8200字》
评论
0/150
提交评论