版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届广东省深圳罗湖区四校联考九上数学期末综合测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,⊙O是△ABC的外接圆,若∠AOB=100°,则∠ACB的度数是()A.60° B.50° C.40° D.30°2.四张背面完全相同的卡片,正面分别画有平行四边形、菱形、等腰梯形、圆,现从中任意抽取一张,卡片上所画图形恰好是轴对称图形的概率为()A.1 B. C. D.3.下列图形,是轴对称图形,但不是中心对称图形的是()A. B. C. D.4.下表是一组二次函数的自变量x与函数值y的对应值:
1
1.1
1.2
1.3
1.4
-1
-0.49
0.04
0.59
1.16
那么方程的一个近似根是()A.1 B.1.1 C.1.2 D.1.35.如图,要测量小河两岸相对的两点P,A的距离,可以在小河边取PA的垂线PB上的一点C,测得PC=100米,∠PCA=35°,则小河宽PA等于()A.100sin35°米 B.100sin55°米 C.100tan35°米 D.100tan55°米6.如图,在△ABC中,点D、E分别在边AB、AC的反向延长线上,下面比例式中,不能判定ED//BC的是()A. B.C. D.7.下列关于三角形的内心说法正确的是()A.内心是三角形三条角平分线的交点B.内心是三角形三边中垂线的交点C.内心到三角形三个顶点的距离相等D.钝角三角形的内心在三角形外8.下列事件中,必然发生的事件是()A.随意翻到一本书的某页,这页的页码是奇数B.通常温度降到0℃以下,纯净的水结冰C.地面发射一枚导弹,未击中空中目标D.测量某天的最低气温,结果为-150℃9.如图,在正方形ABCD中,AB=5,点M在CD的边上,且DM=2,△AEM与△ADM关于AM所在的直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为()A. B. C. D.10.如图,PA,PB切⊙O于点A,B,点C是⊙O上一点,且∠P=36°,则∠ACB=()A.54° B.72° C.108° D.144°11.如图,矩形ABCD中,BC=4,CD=2,O为AD的中点,以AD为直径的弧DE与BC相切于点E,连接BD,则阴影部分的面积为()A.π B. C.π+2 D.+412.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,若旋转角为20°,则∠1为()A.110° B.120° C.150° D.160°二、填空题(每题4分,共24分)13.如图,这是二次函数y=x2﹣2x﹣3的图象,根据图象可知,函数值小于0时x的取值范围为_____.14.为了估计虾塘里海虾的数目,第一次捕捞了500只虾,将这些虾一一做上标记后放回虾塘.几天后,第二次捕捞了2000只虾,发现其中有20只虾身上有标记,则可估计该虾塘里约有_____只虾.15.若双曲线的图象在第二、四象限内,则的取值范围是________.16.已知二次函数(),与的部分对应值如下表所示:-10123461-2-3-2下面有四个论断:①抛物线()的顶点为;②;③关于的方程的解为,;④当时,的值为正,其中正确的有_______.17.边长为4cm的正方形ABCD绕它的顶点A旋转180°,顶点B所经过的路线长为(______)cm.18.某厂一月份的总产量为500吨,通过技术更新,产量逐月提高,三月份的总产量达到720吨.若平均每月增长率是,则可列方程为__.三、解答题(共78分)19.(8分)在Rt△ABC中,∠BCA=90°,∠A<∠ABC,D是AC边上一点,且DA=DB,O是AB的中点,CE是△BCD的中线.(1)如图a,连接OC,请直接写出∠OCE和∠OAC的数量关系:;(2)点M是射线EC上的一个动点,将射线OM绕点O逆时针旋转得射线ON,使∠MON=∠ADB,ON与射线CA交于点N.①如图b,猜想并证明线段OM和线段ON之间的数量关系;②若∠BAC=30°,BC=m,当∠AON=15°时,请直接写出线段ME的长度(用含m的代数式表示).20.(8分)天空中有一个静止的广告气球C,从地面A点测得C点的仰角为45°,从地面B测得仰角为60°,已知AB=20米,点C和直线AB在同一铅垂平面上,求气球离地面的高度.(结果精确到0.1米)21.(8分)如图,AB是半圆O的直径,AD为弦,∠DBC=∠A.(1)求证:BC是半圆O的切线;(2)若OC∥AD,OC交BD于E,BD=6,CE=4,求AD的长.22.(10分)请完成下面的几何探究过程:(1)观察填空如图1,在Rt△ABC中,∠C=90°,AC=BC=4,点D为斜边AB上一动点(不与点A,B重合),把线段CD绕点C顺时针旋转90°得到线段CE,连DE,BE,则①∠CBE的度数为____________;②当BE=____________时,四边形CDBE为正方形.(2)探究证明如图2,在Rt△ABC中,∠C=90°,BC=2AC=4,点D为斜边AB上一动点(不与点A,B重合),把线段CD绕点C顺时针旋转90°后并延长为原来的两倍得到线段CE,连DE,BE则:①在点D的运动过程中,请判断∠CBE与∠A的大小关系,并证明;②当CD⊥AB时,求证:四边形CDBE为矩形(3)拓展延伸如图2,在点D的运动过程中,若△BCD恰好为等腰三角形,请直接写出此时AD的长.23.(10分)(1)计算:(2)解不等式:24.(10分)(1)如图1,在△ABC中,AB>AC,点D,E分别在边AB,AC上,且DE∥BC,若AD=2,AE=,则的值是;(2)如图2,在(1)的条件下,将△ADE绕点A逆时针方向旋转一定的角度,连接CE和BD,的值变化吗?若变化,请说明理由;若不变化,请求出不变的值;(3)如图3,在四边形ABCD中,AC⊥BC于点C,∠BAC=∠ADC=θ,且tanθ=,当CD=6,AD=3时,请直接写出线段BD的长度.25.(12分)如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.(1)请完成如下操作:①以点O为原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系;②根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD.(2)请在(1)的基础上,完成下列填空:①写出点的坐标:C;D();②⊙D的半径=(结果保留根号);③若扇形ADC是一个圆锥的侧面展开图,则该圆锥的底面的面积为;(结果保留π)④若E(7,0),试判断直线EC与⊙D的位置关系,并说明你的理由.26.如图,AB和DE直立在地面上的两根立柱,已知AB=5m,某一时刻AB在太阳光下的影子长BC=3m.(1)在图中画出此时DE在太阳光下的影子EF;(2)在测量AB影子长时,同时测量出EF=6m,计算DE的长.
参考答案一、选择题(每题4分,共48分)1、B【分析】直接利用圆周角定理可求得∠ACB的度数.【详解】∵⊙O是△ABC的外接圆,∠AOB=100°,
∴∠ACB=∠AOB=100°=50.
故选:B.【点睛】本题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角是所对的圆心角的一半.2、B【解析】以上图形中轴对称图形有菱形、等腰梯形、圆,所以概率为3÷4=.故选B3、A【解析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.是轴对称图形,不是中心对称图形,符合题意;B.不是轴对称图形,是中心对称图形,不符合题意;C.是轴对称图形,是中心对称图形,不符合题意;D.是轴对称图形,是中心对称图形,不符合题意;故选:A.【点睛】本题考查的知识点是识别轴对称图形与中心对称图形,需要注意的是轴对称图形是关于对称轴成轴对称;中心对称图形是关于某个点成中心对称.4、C【详解】解:观察表格得:方程x2+3x﹣5=0的一个近似根为1.2,故选C考点:图象法求一元二次方程的近似根.5、C【分析】根据正切函数可求小河宽PA的长度.【详解】∵PA⊥PB,PC=100米,∠PCA=35°,∴小河宽PA=PCtan∠PCA=100tan35°米.故选C.【点睛】考查了解直角三角形的应用,解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.6、C【分析】根据平行线分线段成比例定理推理的逆定理,对各选项进行逐一判断即可.【详解】A.当时,能判断;B.
当时,能判断;C.
当时,不能判断;D.
当时,,能判断.故选:C.【点睛】本题考查平行线分线段成比例定理推理的逆定理,根据定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.能根据定理判断线段是否为对应线段是解决此题的关键.7、A【分析】根据三角形内心定义即可得到答案.【详解】∵内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心,∴A正确,B、C、D均错误,故选:A.【点睛】此题考查三角形的内心,熟记定义是解题的关键.8、B【解析】解:A.随意翻到一本书的某页,这页的页码是奇数,是随机事件;B.通常温度降到0℃以下,纯净的水结冰,是必然事件;C.地面发射一枚导弹,未击中空中目标,是随机事件;D.测量某天的最低气温,结果为-150℃,是不可能事件.故选B.9、A【分析】连接BM.先判定△FAE≌△MAB(SAS),即可得到EF=BM.再根据BC=CD=AB=1,CM=2,利用勾股定理即可得到,Rt△BCM中,BM=,进而得出EF的长.【详解】解:如图,连接BM.∵△AEM与△ADM关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵△ADM按照顺时针方向绕点A旋转90°得到△ABF,∴AF=AM,∠FAB=∠MAD.∴∠FAB=∠MAE∴∠FAB+∠BAE=∠BAE+∠MAE.∴∠FAE=∠MAB.∴△FAE≌△MAB(SAS).∴EF=BM.∵四边形ABCD是正方形,∴BC=CD=AB=1.∵DM=2,∴CM=2.∴在Rt△BCM中,BM=,∴EF=,故选:A.【点睛】本题考查正方形的性质、三角形的判定和性质,关键在于做好辅助线,熟记性质.10、B【解析】连接AO,BO,∠P=36°,所以∠AOB=144°,所以∠ACB=72°.故选B.11、A【分析】连接OE交BD于F,如图,利用切线的性质得到OE⊥BC,再证明四边形ODCE和四边形ABEO都是正方形得到BE=2,∠DOE=∠BEO=90°,易得△ODF≌△EBF,所以S△ODF=S△EBF,然后根据扇形的面积公式,利用阴影部分的面积=S扇形EOD计算即可.【详解】连接OE交BD于F,如图,∵以AD为直径的半圆O与BC相切于点E,∴OE⊥BC.∵四边形ABCD为矩形,OA=OD=2,而CD=2,∴四边形ODCE和四边形ABEO都是正方形,∴BE=2,∠DOE=∠BEO=90°.∵∠BFE=∠DFO,OD=BE,∴△ODF≌△EBF(AAS),∴S△ODF=S△EBF,∴阴影部分的面积=S扇形EOD.故选:A.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形面积公式.12、A【解析】设C′D′与BC交于点E,如图所示:∵旋转角为20°,∴∠DAD′=20°,∴∠BAD′=90°−∠DAD′=70°.∵∠BAD′+∠B+∠BED′+∠D′=360°,∴∠BED′=360°−70°−90°−90°=11°,∴∠1=∠BED′=110°.故选A.二、填空题(每题4分,共24分)13、﹣1<x<1.【分析】根据图象直接可以得出答案【详解】如图,从二次函数y=x2﹣2x﹣1的图象中可以看出函数值小于0时x的取值范围为:﹣1<x<1【点睛】此题重点考察学生对二次函数图象的理解,抓住图象性质是解题的关键14、1.【分析】设该虾塘里约有x只虾,根据题意列出方程,解之可得答案.【详解】解:设此鱼塘内约有鱼x条,根据题意,得:=,解得:x=1,经检验:x=1是原分式方程的解,∴该虾塘里约有1只虾,故答案为:1.【点睛】本题考查了用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法.15、m<8【分析】对于反比例函数:当k>0时,图象在第一、三象限;当k<0时,图象在第二、四象限.【详解】由题意得,解得故答案为:【点睛】本题考查的是反比例函数的性质,本题属于基础应用题,只需学生熟练掌握反比例函数的性质,即可完成.16、①③④【分析】根据表格,即可判断出抛物线的对称轴,从而得到顶点坐标,即可判断①;根据抛物线的对称性即可判断②;根据表格中函数值为-2时,对应的x的值,即可判断③;根据二次函数的增减性即可判断④.【详解】解:①根据表格可知:抛物线()的对称轴为x=2,∴抛物线()的顶点为,故①正确;②根据抛物线的对称性可知:当x=4和x=0时,对应的函数值相同,∴m=1,故②错误;③由表格可知:对于二次函数,当y=-2时,对应的x的值为1或3∴关于的方程的解为,,故③正确;④由表格可知:当x<2时,y随x的增大而减小∵,抛物线过(0,1)∴当时,>1>0∴当时,的值为正,故④正确.故答案为:①③④.【点睛】此题考查的是二次函数的图象及性质,掌握二次函数的对称性、顶点坐标与最值、二次函数与一元二次方程的关系和二次函数的增减性是解决此题的关键.17、4π【解析】试题解析:∵边长为4cm的正方形ABCD绕它的顶点A旋转180°,顶点B所经过的路线是一段弧长,
弧长是以点A为圆心,AB为半径,圆心角是180°的弧长,
∴根据弧长公式可得:=4π.
故选A.18、【分析】根据增长率的定义列方程即可,二月份的产量为:,三月份的产量为:.【详解】二月份的产量为:,三月份的产量为:.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟练理解增长率的表示方法,一般用增长后的量=增长前的量×(1+增长率).三、解答题(共78分)19、(1)∠ECO=∠OAC;(2)①OM=ON,理由见解析,②EM的值为m+m或m﹣m【分析】(1)结论:∠ECO=∠OAC.理由直角三角形斜边中线定理,三角形的中位线定理解决问题即可.(2)①只要证明△COM≌△AON(ASA),即可解决问题.②分两种情形:如图3﹣1中,当点N在CA的延长线上时,如图3﹣2中,当点N在线段AC上时,作OH⊥AC于H.分别求解即可解决问题.【详解】解:(1)结论:∠ECO=∠OAC.理由:如图1中,连接OE.∵∠BCD=90°,BE=ED,BO=OA,∵CE=ED=EB=BD,CO=OA=OB,∴∠OCA=∠A,∵BE=ED,BO=OA,∴OE∥AD,OE=AD,∴CE=EO.∴∠EOC=∠OCA=∠ECO,∴∠ECO=∠OAC.故答案为:∠OCE=∠OAC.(2)如图2中,∵OC=OA,DA=DB,∴∠A=∠OCA=∠ABD,∴∠COA=∠ADB,∵∠MON=∠ADB,∴∠AOC=∠MON,∴∠COM=∠AON,∵∠ECO=∠OAC,∴∠MCO=∠NAO,∵OC=OA,∴△COM≌△AON(ASA),∴OM=ON.②如图3﹣1中,当点N在CA的延长线上时,∵∠CAB=30°=∠OAN+∠ANO,∠AON=15°,∴∠AON=∠ANO=15°,∴OA=AN=m,∵△OCM≌△OAN,∴CM=AN=m,在Rt△BCD中,∵BC=m,∠CDB=60°,∴BD=m,∵BE=ED,∴CE=BD=m,∴EM=CM+CE=m+m.如图3﹣2中,当点N在线段AC上时,作OH⊥AC于H.∵∠AON=15°,∠CAB=30°,∴∠ONH=15°+30°=45°,∴OH=HN=m,∵AH=m,∴CM=AN=m﹣m,∵EC=m,∴EM=EC﹣CM=m﹣(m﹣m)=m﹣m,综上所述,满足条件的EM的值为m+m或m﹣m.【点睛】本题属于几何变换综合题,考查了直角三角形斜边中线定理、三角形中位线定理、全等三角形的判定和性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题.20、47.3米【解析】试题分析:过点C作CD⊥AB,交AB于点D;设AD=x.本题涉及到两个直角三角形△ADC、△BDC,应利用其公共边CD构造等量关系,解三角形可得AD、BD与x的关系;借助AB=AD-BD构造方程关系式,进而可求出答案.试题解析:过点C作CD⊥AB,交AB于点D;设CD=x,在Rt△ADC中,有AD==CD=x,在Rt△BDC中,有BD=x,又有AB=AD-BD=20;即x-x=20,解得:x=10(3+)≈47.3(米).答:气球离地面的高度CD为47.3米.21、(1)见解析;(2)AD=4.5.【分析】(1)若证明BC是半圆O的切线,利用切线的判定定理:即证明AB⊥BC即可;
(2)因为OC∥AD,可得∠BEC=∠D=90°,再有其他条件可判定△BCE∽△BAD,利用相似三角形的性质:对应边的比值相等即可求出AD的长.【详解】(1)证明:∵AB是半圆O的直径,
∴BD⊥AD,
∴∠DBA+∠A=90°,
∵∠DBC=∠A,
∴∠DBA+∠DBC=90°即AB⊥BC,
∴BC是半圆O的切线;(2)解:∵OC∥AD,
∴∠BEC=∠D=90°,
∵BD⊥AD,BD=6,
∴BE=DE=3,
∵∠DBC=∠A,
∴△BCE∽△BAD,,即;∴AD=4.5【点睛】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了相似三角形的判定和性质.22、(1)①45°,②;(2)①,理由见解析,②见解析;(3)或【分析】(1)①由等腰直角三角形的性质得出,由旋转的性质得:,,证明,即可得出结果;②由①得,求出,作于,则是等腰直角三角形,证出是等腰直角三角形,求出,证出四边形是矩形,再由垂直平分线的性质得出,即可得出结论;(2)①证明,即可得出;②由垂直的定义得出,由相似三角形的性质得出,即可得出结论;(3)存在两种情况:①当时,证出,由勾股定理求出,即可得出结果;②当时,得出即可.【详解】解:(1)①,,,由旋转的性质得:,,在和中,,,;故答案为:;②当时,四边形是正方形;理由如下:由①得:,,作于,如图所示:则是等腰直角三角形,,,,,是等腰直角三角形,,,又,四边形是矩形,又垂直平分,,四边形是正方形;故答案为:;(2)①,理由如下:由旋转的性质得:,,,,,;②,,由①得:,,又,四边形是矩形;(3)在点的运动过程中,若恰好为等腰三角形,存在两种情况:①当时,则,,,,,,,,;②当时,;综上所述:若恰好为等腰三角形,此时的长为或.【点睛】本题是四边形综合题目,考查了旋转的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、矩形的判定、正方形的判定、相似三角形的判定与性质、勾股定理以及分类讨论等知识;本题综合性强,熟练掌握旋转的性质,证明三角形相似是解决问题的关键,注意分类讨论.23、(1)4;(2).【分析】(1)先计算乘方、除法、二次根式化简,再将结果相加即可;(2)按照去括号、移项、系数化为1的步骤即可求出解集.【详解】(1)原式=4;(2),,,.【点睛】此题考查计算能力,(1)考查实数的计算,按照计算顺序正确计算即可;(2)考查解不等式,根据计算顺序正确计算即可.24、(1);(2)的值不变化,值为,理由见解析;(3)【分析】(1)由平行线分线段成比例定理即可得出答案;(2)证明△ABD∽△ACE,得出==(3)作AE⊥CD于E,DM⊥AC于M,DN⊥BC于N,则DM=CN,DN=MC,由三角函数定义得出=,=,得出=,求出AE=AD=,DE=AE=,得出CE=CD﹣DE=,由勾股定理得出AC==,得出BC=AC=,由面积法求出CN=DM=,得出BN=BC+CN=,由勾股定理得出AM==,得出DN=MC=AM+AC=,再由勾股定理即可得出答案.【详解】(1)∵DE∥BC,∴===;故答案为:;(2)的值不变化,值为;理由如下:由(1)得:DE∥B,∴△ADE∽△ABC,∴=,由旋转的性质得:∠BAD=∠CAE,∴△ABD∽△ACE,∴==;(3)作AE⊥CD于E,DM⊥AC于M,DN⊥BC于N,如图3所示:则四边形DMCN是矩形,∴DM=CN,DN=MC,∵∠BAC=∠ADC=θ,且tanθ=,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校住宿管理方案
- 园林绿化防火应急方案
- 小学二年级语文上学期工作总结
- 初中学生体质健康提升方案
- 2024年新版房屋买卖合同
- 幼儿园消毒管理制度
- 第二章 抗原课件
- Methyl-streptonigrin-Methyl-bruneomycin-生命科学试剂-MCE
- Methyl-7α-hydroxy-3-ketocholanoate-生命科学试剂-MCE
- Mepiquat-chloride-Standard-生命科学试剂-MCE
- (完整word版)电气设备预试方案
- upvc污水管道施工方案
- 第五章霍普菲尔德(Hopfield)神经网络
- 全国国防教育示范学校形象标识、金属牌匾样式
- 德国WMF压力锅使用手册
- 市政府质量奖组织概述
- 围棋教学计划
- 临时用地复耕方案
- 处方调剂流程
- 国有企业共青团创新工作方法研究
- 建筑行业(建筑工程)建设项目设计方案规模划分表.doc
评论
0/150
提交评论