版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省邢台市临城县临城镇中学2025届九上数学期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.在平面直角坐标系中,点M(1,﹣2)与点N关于原点对称,则点N的坐标为()A.(﹣2,1) B.(1,﹣2) C.(2,-1) D.(-1,2)2.如果函数的图象与双曲线相交,则当时,该交点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()A.y=(x+2)2﹣5 B.y=(x+2)2+5 C.y=(x﹣2)2﹣5 D.y=(x﹣2)2+54.将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是()A.向左平移2个单位B.向右平移2个单位C.向上平移2个单位D.向下平移2个单位5.已知反比例函数y=的图象上有A(x1,y1)、B(x2,y2)两点,当x1<x2<0时,y1<y2,则m的取值范围是()A.m<0 B.m>0 C.m< D.m>6.如图,,,是⊙上的三个点,如果∠°,那么∠的度数为()A. B. C. D.7.下列图案中既是中心对称图形,又是轴对称图形的是()A. B. C. D.8.如图,在平行四边形中,,,那么的值等于()A. B. C. D.9.已知关于x的方程x2+bx+a=0有一个根是﹣a(a≠0),则a﹣b的值为()A.a﹣b=1 B.a﹣b=﹣1 C.a﹣b=0 D.a﹣b=±110.神舟十号飞船是我国“神州”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为()A.2.8×103 B.28×103 C.2.8×104 D.0.28×10511.关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0的一个根为0,则m为()A.0 B.1 C.﹣1 D.1或﹣112.一个不透明的袋子中装有仅颜色不同的1个红球和3个绿球,从袋子中随机摸出一个小球,记下颜色后,不放回再随机摸出一个小球,则两次摸出的小球恰好是一个红球和一个绿球的概率为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,一个可以自由转动的转盘,任意转动转盘一次,当转盘停止时,指针落在红色区域的概率为____.14.如图,AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,如果MN=,那么BC=____________.15.如图,P是等边三角形ABC内一点,将线段BP绕点B逆时针旋转60°得到线段BQ,连接AQ.若PA=4,PB=5,PC=3,则四边形APBQ的面积为_______.16.如图,是的直径,弦与弦长度相同,已知,则________.17.如果函数是关于的二次函数,则__________.18.一个圆锥的母线长为5cm,底面圆半径为3cm,则这个圆锥的侧面积是____cm².(结果保留π).三、解答题(共78分)19.(8分)如图,在平面内。点为线段上任意一点.对于该平面内任意的点,若满足小于等于则称点为线段的“限距点”.(1)在平面直角坐标系中,若点.①在的点中,是线段的“限距点”的是;②点P是直线上一点,若点P是线段AB的“限距点”,请求出点P横坐标的取值范围.(2)在平面直角坐标系中,若点.若直线上存在线段AB的“限距点”,请直接写出的取值范围20.(8分)如图,中,,是斜边上一个动点,以为直径作交于点,与的另一个交点,连接.(1)当时,①若,求的度数;②求证;(2)当,时,是否存在点,使得是等腰三角形,若存在,求出所有符合条件的的长.21.(8分)如图,已知抛物线与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1.(1)求此抛物线的解析式以及点B的坐标.(2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N同时停止运动.过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒.①当t为何值时,四边形OMPN为矩形.②当t>0时,△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.22.(10分)为了了解全校1500名学生对学校设置的篮球、羽毛球、乒乓球、踢毽子、跳绳共5项体育活动的喜爱情况,在全校范围内随机抽查部分学生,对他们喜爱的体育项目(每人只选一项)进行了问卷调查,将统计数据绘制成如图两幅不完整统计图,请根据图中提供的信息解答下列各题.(1)m=%,这次共抽取了名学生进行调查;并补全条形图;(2)请你估计该校约有名学生喜爱打篮球;(3)现学校准备从喜欢跳绳活动的4人(三男一女)中随机选取2人进行体能测试,请利用列表或画树状图的方法,求抽到一男一女学生的概率是多少?23.(10分)解方程(1)7x2-49x=0;(2)x2-2x-1=0.24.(10分)如图,已知△ABC为和点A'.(1)以点A'为顶点求作△A'B'C',使△A'B'C'∽△ABC,S△A'B'C'=4S△ABC;(尺规作图,保留作图痕迹,不写作法)(2)设D、E、F分别是△ABC三边AB、BC、AC的中点,D'、E'、F'分别是你所作的△A'B'C'三边A'B'、B'C'、A'C'的中点,求证:△DEF∽△D'E'F'.25.(12分)甲乙两人在玩转盘游戏时,把转盘A、B分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定,转动两个转盘停止后,指针所指的两个数字之和为奇数时,甲获胜;为偶数时,乙获胜.(1)用列表法(或画树状图)求甲获胜的概率;(2)你认为这个游戏规则对双方公平吗?请简要说明理由.26.如图,在圆中,弦,点在圆上(与,不重合),联结、,过点分别作,,垂足分别是点、.(1)求线段的长;(2)点到的距离为3,求圆的半径.
参考答案一、选择题(每题4分,共48分)1、D【解析】解:点M(1,﹣2)与点N关于原点对称,点N的坐标为故选D.【点睛】本题考查关于原点对称的点坐标特征:横坐标和纵坐标都互为相反数.2、C【分析】直线的图象经过一、三象限,而函数y=2x的图象与双曲线y(k≠0)相交,所以双曲线也经过一、三象限,则当x<0时,该交点位于第三象限.【详解】因为函数y=2x的系数k=2>0,所以函数的图象过一、三象限;又由于函数y=2x的图象与双曲线y(k≠0)相交,则双曲线也位于一、三象限;故当x<0时,该交点位于第三象限.故选:C.【点睛】本题考查了反比例函数的图象和性质以及正比例函数的图象和性质,要掌握它们的性质才能灵活解题.3、A【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】抛物线y=x2的顶点坐标为(0,0),先向左平移2个单位再向下平移1个单位后的抛物线的顶点坐标为(﹣2,﹣1),所以,平移后的抛物线的解析式为y=(x+2)2﹣1.故选A.【点睛】本题考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答本题的关键.4、A【解析】试题分析:根据抛物线的平移规律即可得答案,故答案选A.考点:抛物线的平移规律.5、D【解析】试题解析:根据题意,在反比例函数y=的图象上,当x1<x2<0时,y1<y2,故可知该函数在第二象限时,y随x的增大而增大,即1-2m<0,解得,m>.故选D.6、C【分析】在弧AB上取一点D,连接AD,BD,利用圆周角定理可知,再利用圆内接四边形的性质即可求出∠的度数.【详解】如图,在弧AB上取一点D,连接AD,BD,则∴故选C【点睛】本题主要考查圆周角定理及圆内接四边形的性质,掌握圆周角定理及圆内接四边形的性质是解题的关键.7、D【分析】根据中心对称图形以及轴对称图形的定义逐项判断即可.在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.【详解】解:A.不是中心对称图形,是轴对称图形,此选项错误;B.是中心对称图形,不是轴对称图形,此选项错误;C.不是中心对称图形,是轴对称图形,此选项错误;D.既是中心对称图形,又是轴对称图形,此选项正确;故选:D.【点睛】本题考查的知识点是识别中心对称图形以及轴对称图形,掌握中心对称图形以及轴对称图形的特征是解此题的关键.8、D【分析】由题意首先过点A作AF⊥DB于F,过点D作DE⊥AB于E,设DF=x,然后利用勾股定理与含30°角的直角三角形的性质,表示出个线段的长,再由三角形的面积,求得x的值,继而求得答案.【详解】解:过点A作AF⊥DB于F,过点D作DE⊥AB于E.设DF=x,∵∠ADB=60°,∠AFD=90°,∴∠DAF=30°,则AD=2x,∴AF=x,又∵AB:AD=3:2,∴AB=3x,∴,∴,解得:,∴.故选:D.【点睛】本题考查平行四边形的性质和三角函数以及勾股定理.解题时注意掌握辅助线的作法以及注意数形结合思想与方程思想的应用.9、B【分析】把x=﹣a代入方程得到一个二元二次方程,方程的两边都除以a,即可得出答案.【详解】把x=﹣a代入方程得:(﹣a)2﹣ab+a=0,a2﹣ab+a=0,∵a≠0,∴两边都除以a得:a﹣b+1=0,即a﹣b=﹣1,故选:B.【点睛】此题考查一元二次方程的解,是方程的解即可代入方程求其他未知数的值或是代数式的值.10、C【解析】试题分析:28000=1.1×1.故选C.考点:科学记数法—表示较大的数.11、C【分析】将0代入一元二次方程中建立一个关于m的一元二次方程,解方程即可,再根据一元二次方程的定义即可得出答案.【详解】解:依题意,得m2﹣1=0,且m﹣1≠0,解得m=﹣1.故选:C.【点睛】本题主要考查一元二次方程的根及一元二次方程的定义,准确的运算是解题的关键.12、A【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球恰好是一个红球和一个绿球的情况,再利用概率公式即可求得答案.【详解】画树状图为:共有12种等可能的结果数,其中两次摸出的小球恰好是一个红球和一个绿球的结果数为6,所以两次摸出的小球恰好是一个红球和一个绿球的概率==.故选A.【点睛】此题考查列表法与树状图法,解题关键在于根据题意画出树状图.二、填空题(每题4分,共24分)13、【分析】用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率.【详解】解:因为蓝色区域的圆心角的度数为120°,所以指针落在红色区域内的概率是=,故答案为.【点睛】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是利用长度比,面积比,体积比等.14、2【分析】根据垂径定理得出AN=CN,AM=BM,根据三角形的中位线性质得出BC=2MN,即可得出答案.【详解】解:∵OM⊥AB,ON⊥AC,OM过O,ON过O,
∴AN=CN,AM=BM,
∴BC=2MN,
∵MN=,∴BC=2,故答案为:2.【点睛】本题考查了垂径定理和三角形的中位线性质,能熟记知识点的内容是解此题的关键,注意:垂直于弦的直径平分弦.15、【分析】由旋转的性质可得△BPQ是等边三角形,由全等三角形的判定可得△ABQ≌△CBP(SAS),由勾股定理的逆定理可得△APQ是直角三角形,求四边形的面积转化为求两个特殊三角形的面积即可.【详解】解:连接PQ,由旋转的性质可得,BP=BQ,又∵∠PBQ=60°,∴△BPQ是等边三角形,∴PQ=BP,在等边三角形ABC中,∠CBA=60°,AB=BC,∴∠ABQ=60°-∠ABP∠CBP=60°-∠ABP∴∠ABQ=∠CBP在△ABQ与△CBP中,∴△ABQ≌△CBP(SAS),∴AQ=PC,又∵PA=4,PB=5,PC=3,∴PQ=BP=5,PC=AQ=3,在△APQ中,因为,25=16+9,∴由勾股定理的逆定理可知△APQ是直角三角形,∴,故答案为:【点睛】本题主要考查了旋转的性质、全等三角形的判定、勾股定理的逆定理及特殊三角形的面积,解题的关键是作出辅助线,转化为特殊三角形进行求解.16、【分析】连接BD交OC与E,得出,从而得出;再根据弦与弦长度相同得出,即可得出的度数.【详解】连接BD交OC与E是的直径弦与弦长度相同故答案为.【点睛】本题考查了圆周角定理,辅助线得出是解题的关键.17、1【分析】根据二次函数的定义得到且,然后解不等式和方程即可得到的值.【详解】∵函数是关于的二次函数,
∴且,解方程得:或(舍去),
∴.
故答案为:1.【点睛】本题考查二次函数的定义,关键是掌握二次函数的定义:一般地,形如(是常数,)的函数,叫做二次函数.18、15π【分析】圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【详解】解:圆锥的侧面积=π×3×5=15πcm2故答案为:15π.【点睛】本题考查圆锥侧面积公式的运用,掌握公式是关键.三、解答题(共78分)19、(1)①E;②;(2).【分析】(1)①分别计算出C、D、E到A、B的距离,根据“限距点”的含义即可判定;②画出图形,由“限距点”的定义可知,当点P位于直线上x轴上方并且AP时,点P是线段AB的“限距点”,据此可解;(2)画出图形,可知当时,直线上存在线段AB的“限距点”,据此可解.【详解】(1)①计算可知AC=BC=,DA=,DB=,EA=EB=2,设点为线段上任意一点,则,,,∴,∴点E为线段AB的“限距点”.故答案是:E.②如图,作PF⊥x轴于F,由“限距点”的定义可知,当点P位于直线上x轴上方并且AP时,点P是线段AB的“限距点”,∵直线与x轴交于点A(-1,0),交y轴于点H(0,),∴∠OAH=30°,∴当AP=2时,AF=,∴此时点P的横坐标为-1,∴点P横坐标的取值范围是;(2)如图,直线与x轴交于M,AB交x轴于G,∵点A(t,1)、B(t,-1),直线与x轴的交点M(-1,0),与y轴的交点C(0,),∴,∴∠NMO=30°,①当圆B与直线相切于点N,连接BN,连接BA并延长与直线交于D(t,)点,∵∠NBD=∠NMO=30°,∴,即,解得:;②当圆A与直线相切时,同理可知:∴.【点睛】本题考查了一次函数、圆的性质、两点间的距离公式,是综合性较强的题目,通过做此题培养了学生的阅读能力、数形结合的能力,此题是一道非常好、比较典型的题目.20、(1)①40°;②证明见解析;(2)存在,的长为10或或1【分析】(1)①连接,由圆周角定理得出,求出,,则,即可得出结果;②由,得出,易证,由,,得出,即可得出结论;(2)由勾股定理得,由面积公式得出,求出,连接,则,得出,求出,是等腰三角形,分三种情况讨论,当时,,,;当时,可知点是斜边的中线,得出,;当时,作,则是中点,,求出,,,由,得出,求出,,,则.【详解】(1)①解:连接,如图1所示:是直径,,,,,,,;②证明:,,,,,,,,;(2)解:由,,由勾股定理得:,,即,连接,如图所示:是直径,,,,,,,是等腰三角形,分三种情况:当时,,,;当时,可知点是斜边的中线,,;当时,作,则是中点,,如图所示:,,,,,即,解得:,,,;综上所述,是等腰三角形,符合条件的的长为10或或1.【点睛】本题是圆的综合题目,考查了圆周角定理、勾股定理、等腰三角形的判定与性质、三角形中位线定理、相似三角形的判定与性质,熟练运用圆的基本性质定理是解题的关键.21、(1),B点坐标为(3,0);(2)①;②.【分析】(1)由对称轴公式可求得b,由A点坐标可求得c,则可求得抛物线解析式;再令y=0可求得B点坐标;(2)①用t可表示出ON和OM,则可表示出P点坐标,即可表示出PM的长,由矩形的性质可得ON=PM,可得到关于t的方程,可求得t的值;②由题意可知OB=OA,故当△BOQ为等腰三角形时,只能有OB=BQ或OQ=BQ,用t可表示出Q点的坐标,则可表示出OQ和BQ的长,分别得到关于t的方程,可求得t的值.【详解】(1)∵抛物线对称轴是直线x=1,∴﹣=1,解得b=2,∵抛物线过A(0,3),∴c=3,∴抛物线解析式为,令y=0可得,解得x=﹣1或x=3,∴B点坐标为(3,0);(2)①由题意可知ON=3t,OM=2t,∵P在抛物线上,∴P(2t,),∵四边形OMPN为矩形,∴ON=PM,∴3t=,解得t=1或t=﹣(舍去),∴当t的值为1时,四边形OMPN为矩形;②∵A(0,3),B(3,0),∴OA=OB=3,且可求得直线AB解析式为y=﹣x+3,∴当t>0时,OQ≠OB,∴当△BOQ为等腰三角形时,有OB=QB或OQ=BQ两种情况,由题意可知OM=2t,∴Q(2t,﹣2t+3),∴OQ=,BQ=|2t﹣3|,又由题意可知0<t<1,当OB=QB时,则有|2t﹣3|=3,解得t=(舍去)或t=;当OQ=BQ时,则有=|2t﹣3|,解得t=;综上可知当t的值为或时,△BOQ为等腰三角形.22、(1)20;50;(2)360;(3).【解析】试题分析:(1)首先由条形图与扇形图可求得m=100%-14%-8%-24%-34%=20%;由跳绳的人数有4人,占的百分比为8%,可得总人数4÷8%=50;(2)由1500×24%=360,即可求得该校约有360名学生喜爱打篮球;(3)首先根据题意画出表格,然后由表格即可求得所有等可能的结果与抽到一男一女学生的情况,再利用概率公式即可求得答案.试题解析:(1)m=100%-14%-8%-24%-34%=20%;∵跳绳的人数有4人,占的百分比为8%,∴4÷8%=50;如图所示;50×20%=10(人).(2)1500×24%=360;(3)列表如下:
男1
男2
男3
女
男1
男2,男1
男3,男1
女,男1
男2
男1,男2
男3,男2
女,男2
男3
男1,男3
男2,男3
女,男3
女
男1,女
男2,女
男3,女
∵所有可能出现的结果共12种情况,并且每种情况出现的可能性相等.其中一男一女的情况有6种.∴抽到一男一女的概率P=.考点:1.列表法与树状图法;2.扇形统计图;3.条形统计图.23、(1)x1=0,x2=7;(2),【解析】(1)用因式分解法求解即可;(2)用配方法求解即可.【详解】(1)∵7x2-49x=0,∴x2-7x=0,∴.解得x1=0,x2=7(2)移项,得,配方,得,开平方,得.解得,【点睛】本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.24、(1)作图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 满井游记课件
- 2024年度物业租赁合同(办公场所)2篇
- 二零二四年度企业清算与法律服务合同
- 体育赛事承办合同
- 简易活动板房施工合同范本共2篇
- 2024年度电子商务供应链管理合同2篇
- 2024年度夫妻财产分割及债务处理协议
- 化工设计-ASPEN软件:第六章分离设备-塔
- 人教版九年级化学第四单元4化学式与化合价课时1化学式及其读写分层作业课件
- 烧伤整形美容护理教学授课
- 国家开放大学(山东)《财税法规专题》形考任务1-3+终结性考核参考答案
- 浙江省交通投资集团有限公司管理招聘真题
- DB50-T 771-2017 地下管线探测技术规范
- 2024年PMP项目管理师考试试卷及答案指导
- 教学计划(教案)-2024-2025学年人教版(2024)美术一年级上册
- 2024年新高考Ⅰ卷、Ⅱ卷、甲卷诗歌鉴赏试题讲评课件
- 任务二:诗歌朗诵教案 人教版
- 高职院校高水平现代物流管理专业群建设方案(现代物流管理专业群)
- 药用辅料生产质量管理规范
- 【小学语文中高年级单元整体设计的实践探究2000字(论文)】
- 全国清华大学版信息技术七年级下册第2单元第4课《动物的力量-认识高效运算的函数》教学设计
评论
0/150
提交评论