版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
丽水市重点中学2025届数学九上期末统考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.下列是我国四大银行的商标,其中不是轴对称图形的是()A. B. C. D.2.在正方形网格中,的位置如图所示,则的值为()A. B. C. D.3.如图,的半径为5,的内接于,若,则的值为()A. B. C. D.4.观察下列四个图形,中心对称图形是()A. B. C. D.5.体育课上,某班两名同学分别进行5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较这两名学生成绩的()A.平均数 B.频数 C.中位数 D.方差6.在平面直角坐标系中,点E(﹣4,2),点F(﹣1,﹣1),以点O为位似中心,按比例1:2把△EFO缩小,则点E的对应点E的坐标为(
)A.(2,﹣1)或(﹣2,1) B.(8,﹣4)或(﹣8,4) C.(2,﹣1) D.(8,﹣4)7.将二次函数化成顶点式,变形正确的是:()A. B. C. D.8.如图,A、B是曲线上的点,经过A、B两点向x轴、y轴作垂线段,若S阴影=1则S1+S2=()A.4 B.5 C.6 D.89.如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕A逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,是图中阴影部分的面积为()A.π﹣6 B.π C.π﹣3 D.+π10.对于抛物线,下列说法中错误的是()A.顶点坐标为B.对称轴是直线C.当时,随的增大减小D.抛物线开口向上二、填空题(每小题3分,共24分)11.钟表分针的运动可看作是一种旋转现象,一只标准时钟的分针匀速旋转,经过15分钟旋转了______度.12.如图,点在上,,则度数为_____.13.如图,已知直线l:y=﹣x+4分别与x轴、y轴交于点A,B,双曲线(k>0,x>0)与直线l不相交,E为双曲线上一动点,过点E作EG⊥x轴于点G,EF⊥y轴于点F,分别与直线l交于点C,D,且∠COD=45°,则k=_____.14.已知,则的值是_______.15.计算:2sin245°﹣tan45°=______.16.如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为_____.17.两个少年在绿茵场上游戏.小红从点A出发沿线段AB运动到点B,小兰从点C出发,以相同的速度沿⊙O逆时针运动一周回到点C,两人的运动路线如图1所示,其中AC=DB.两人同时开始运动,直到都停止运动时游戏结束,其间他们与点C的距离y与时间x(单位:秒)的对应关系如图2所示.则下列说法正确的有________.(填序号)①小红的运动路程比小兰的长;②两人分别在1.09秒和7.49秒的时刻相遇;③当小红运动到点D的时候,小兰已经经过了点D;④在4.84秒时,两人的距离正好等于⊙O的半径.18.已知,如图,,,且,则与__________是位似图形,位似比为____________.三、解答题(共66分)19.(10分)文明交流互鉴是推动人类文明进步和世界和平发展的重要动力.2019年5月“亚洲文明对话大会”在北京成功举办,引起了世界人民的极大关注.某市一研究机构为了了解10~60岁年龄段市民对本次大会的关注程度,随机选取了100名年龄在该范围内的市民进行了调查,并将收集到的数据制成了尚不完整的频数分布表、频数分布直方图和扇形统计图,如下所示:(1)请直接写出_______,_______,第3组人数在扇形统计图中所对应的圆心角是_______度.(2)请补全上面的频数分布直方图.(3)假设该市现有10~60岁的市民300万人,问40~50岁年龄段的关注本次大会的人数约有多少?20.(6分)如图,二次函数(其中)的图象与x轴分别交于点A、B(点A位于B的左侧),与y轴交于点C,过点C作x轴的平行线CD交二次函数图像于点D.(1)当m2时,求A、B两点的坐标;(2)过点A作射线AE交二次函数的图像于点E,使得BAEDAB.求点E的坐标(用含m的式子表示);(3)在第(2)问的条件下,二次函数的顶点为F,过点C、F作直线与x轴于点G,试求出GF、AD、AE的长度为三边长的三角形的面积(用含m的式子表示).21.(6分)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH的长).22.(8分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2)(1)画出△ABC关于点B成中心对称的图形△A1BC1;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧画出△ABC放大后的图形△A2B2C2,并直接写出C2的坐标.23.(8分)已知,如图,在平行四边形ABCD中,M是BC边的中点,E是边BA延长线上的一点,连接EM,分别交线段AD于点F、AC于点G.(1)证明:∽(2)求证:;24.(8分)如图,已知抛物线(a≠0)经过A(﹣1,0)、B(3,0)、C(0,﹣3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P的坐标;(3)点M也是直线l上的动点,且△MAC为等腰三角形,请直接写出所有符合条件的点M的坐标.25.(10分)如图,在平面直角坐标系中,的顶点坐标分别为(6,4),(4,0),(2,0).(1)在轴左侧,以为位似中心,画出,使它与的相似比为1:2;(2)根据(1)的作图,=.26.(10分)某蔬菜加工公司先后两批次收购蒜薹(tái)共100吨.第一批蒜薹价格为4000元/吨;因蒜薹大量上市,第二批价格跌至1000元/吨.这两批蒜薹共用去16万元.(1)求两批次购进蒜薹各多少吨;(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据轴对称图形和的概念和各图形特点解答即可.【详解】解:A、不是轴对称图形,故本选项正确;
B、是轴对称图形,故本选项错误;
C、是轴对称图形,故本选项错误;
D、是轴对称图形,故本选项错误;
故选:A.【点睛】本题考查了轴对称图形的特点,判断轴对称图形的关键是寻找对称轴,图象沿对称轴折叠后可重合.2、A【分析】延长AB至D,使AD=4个小正方形的边长,连接CD,先证出△ADC是直角三角形和CD的长,即可求出的值.【详解】解:延长AB至D,使AD=4个小正方形的边长,连接CD,如下图所示,由图可知:△ADC是直角三角形,CD=3个小正方形的边长根据勾股定理可得:AC=个小正方形的边长∴故选A.【点睛】此题考查的是求一个角的正弦值,掌握构造直角三角形的方法是解决此题的关键.3、C【分析】连接OA、OB,作OH⊥AB,利用垂径定理和勾股定理求出OH的长,再根据圆周角定理求出∠ACB=∠AOH,即可利用等角的余弦值相等求得结果.【详解】如图,连接OA、OB,作OH⊥AB,∵AB=8,OH⊥AB,∴AH=AB=4,∠AOB=2∠AOH,∵OA=5,∴OH=,∵∠AOB=2∠ACB,∴∠ACB=∠AOH,∴=cos∠AOH=,故选:C.【点睛】此题考查圆的性质,垂径定理,勾股定理,三角函数,圆周角定理,利用圆周角定理求得∠ACB=∠AOH,由此利用等角的函数值相等解决问题.4、C【分析】根据中心对称图形的定义即可判断.【详解】在平面内,若一个图形可以绕某个点旋转180°后能与自身重合,那么这个图形叫做中心对称图形,根据定义可知,C选项中的图形是中心对称图形.故答案选:C.【点睛】本题考查的知识点是中心对称图形,解题的关键是熟练的掌握中心对称图形.5、D【分析】要判断成绩的稳定性,一般是通过比较两者的方差实现,据此解答即可.【详解】解:要判断哪一名同学的成绩比较稳定,通常需要比较这两名学生成绩的方差.故选:D.【点睛】本题考查了统计量的选择,属于基本题型,熟知方差的意义是解题关键.6、A【分析】利用位似比为1:2,可求得点E的对应点E′的坐标为(2,-1)或(-2,1),注意分两种情况计算.【详解】∵E(-4,2),位似比为1:2,∴点E的对应点E′的坐标为(2,-1)或(-2,1).故选A.【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比.注意位似的两种位置关系.7、A【分析】将化为顶点式,再进行判断即可.【详解】故答案为:A.【点睛】本题考查了一元二次方程的问题,掌握一元二次方程的顶点式表示形式是解题的关键.8、D【分析】B是曲线上的点,经过A、B两点向x轴、y轴作垂线段围成的矩形面积都是5,从而求出S1和S2的值即可【详解】∵A、B是曲线上的点,经过A、B两点向x轴、y轴作垂线段围成的矩形面积都是5,,∵S阴影=1,∴S1=S2=4,即S1+S2=8,故选D【点睛】本题主要考查反比例函数上的点向坐标轴作垂线围成的矩形面积问题,难度不大9、B【解析】根据AB=5,AC=3,BC=4和勾股定理的逆定理判断三角形的形状,根据旋转的性质得到△AED的面积=△ABC的面积,得到阴影部分的面积=扇形ADB的面积,根据扇形面积公式计算即可.【详解】解:∵AB=5,AC=3,BC=4,∴△ABC为直角三角形,由题意得,△AED的面积=△ABC的面积,由图形可知,阴影部分的面积=△AED的面积+扇形ADB的面积﹣△ABC的面积,∴阴影部分的面积=扇形ADB的面积=,故选B.【点睛】考查的是扇形面积的计算、旋转的性质和勾股定理的逆定理,根据图形得到阴影部分的面积=扇形ADB的面积是解题的关键.10、C【分析】A.将抛物线一般式化为顶点式即可得出顶点坐标,由此可判断A选项是否正确;B.根据二次函数的对称轴公式即可得出对称轴,由此可判断B选项是否正确;C.由函数的开口方向和顶点坐标即可得出当时函数的增减性,由此可判断C选项是否正确;D.根据二次项系数a可判断开口方向,由此可判断D选项是否正确.【详解】,∴该抛物线的顶点坐标是,故选项A正确,对称轴是直线,故选项B正确,当时,随的增大而增大,故选项C错误,,抛物线的开口向上,故选项D正确,故选:C.【点睛】本题考查二次函数的性质.对于二次函数y=ax2+bx+c(a≠0),若a>0,当x≤时,y随x的增大而减小;当x≥时,y随x的增大而增大.若a<0,当x≤时,y随x的增大而增大;当x≥时,y随x的增大而减小.在本题中能将二次函数一般式化为顶点式(或会用顶点坐标公式计算)得出顶点坐标是解决此题的关键.二、填空题(每小题3分,共24分)11、90【解析】分针走一圈(360°)要1小时,则每分钟走360°÷60=6°,则15分钟旋转15×6°=90°.故答案为90.12、【分析】根据同圆中同弧所对的圆周角等于圆心角的一半解答即可.【详解】解:点在上,,.故答案为:.【点睛】本题考查的知识点是圆周角定理,熟记定理内容是解题的关键.13、1【解析】证明△ODA∽△CDO,则OD2=CD•DA,而则OD2=(4﹣n)2+n2=2n2﹣1n+16,CD=(m+n﹣4),DA=n,即可求解.【详解】解:点A、B的坐标分别为(4,0)、(0,4),即:OA=OB,∴∠OAB=45°=∠COD,∠ODA=∠ODA,∴△ODA∽△CDO,∴OD2=CD•DA,设点E(m,n),则点D(4﹣n,n),点C(m,4﹣m),则OD2=(4﹣n)2+n2=2n2﹣1n+16,CD=(m+n﹣4),DA=n,即2n2﹣1n+16=(m+n﹣4)×n,解得:mn=1=k,故答案为1.【点睛】本题考查的是反比例函数与一次函数的交点问题,涉及到三角形相似、一次函数等知识点,关键是通过设定点E的坐标,确定相关线段的长度,进而求解.14、【分析】由可设a=k,b=3k,代入中即可.【详解】解:∵,∴设a=k,b=3k,代入中,==.故答案为:.【点睛】本题考查比例线段,解题的关键是学会利用参数解决问题,属于中考常考题型.15、0【解析】原式==0,故答案为0.16、25【解析】试题解析:由题意17、④【分析】利用图象信息一一判断即可解决问题.【详解】解:①由图可知,速度相同的情况下,小红比小兰提前停下来,时间花的短,故小红的运动路程比小兰的短,故本选项不符合题意;
②两人分别在1.09秒和7.49秒的时刻与点C距离相等,故本选项不符合题意;
③当小红运动到点D的时候,小兰也在点D,故本选项不符合题意;
④当小红运动到点O的时候,两人的距离正好等于⊙O的半径,此时t==4.84,故本选项正确;
故答案为:④.【点睛】本题考查动点问题函数图象、解题的关键是读懂图象信息,属于中考常考题型.18、7:1【分析】由平行易得△ABC∽△A′B′C′,且两三角形位似,位似比等于OA′:OA.【详解】解:∵A′B′∥AB,B′C′∥BC,
∴△ABC∽△A′B′C′,,,∠A′B′O=∠ABO,∠C′B′O=∠CBO,,∠A′B′C′=∠ABC,
∴△ABC∽△A′B′C′,∴△ABC与△A′B′C′是位似图形,
位似比=AB:A′B′=OA:OA′=(1+3):1=7:1.【点睛】本题考查了相似图形交于一点的图形的位似图形,位似比等于对应边的比.三、解答题(共66分)19、(1)25,20,126;(2)见解析;(2)60万人.【分析】(1)用抽样人数-第1组人数-第3组人数-第4组人数-第5组人数,可得a的值,用第4组的人数÷抽样人数×100%可以求得m的值,用360°×第3组人数在抽样中所占的比例可得第3组在扇形统计图中所对应的圆心角的度数;(2)根据(1)中a的值,可以将频数分布直方图补充完整;(3)用市民人数×第4组(40~50岁年龄段)的人数在抽样中所占的比例可以计算出40~50岁年龄段的关注本次大会的人数约有多少.【详解】(1)a=100﹣5﹣35﹣20﹣15=25,m%=(20÷100)×100%=20%,第3组人数在扇形统计图中所对应的圆心角是:360°126°.故答案为:25,20,126;(2)由(1)知,20≤x<30有25人,补全的频数分布直方图如图所示;(3)30060(万人).答:40~50岁年龄段的关注本次大会的人数约有60万人.【点睛】本题考查了频数分布直方图、频数分布表、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20、(1),;(2);(3)【分析】(1)求图象与x轴交点,即函数y值为零,解一元二次方程即可;(2)过作轴,过作轴,先求出D点坐标为,设E点为,即可列等式求m的值得E点坐标;(3)由直线的方程:,得G点坐标,再用m的表达式分别表达GF、AD、AE即可.【详解】(1)当时,,∵图象与x轴分别交于点A、B∴时,∴,(2)∵,轴∴过作轴,过作轴∵∴设E∴(3)以GF、BD、BE的长度为三边长的三角形是直角三角形.理由如下:二次函数的顶点为F,则F的坐标为(−m,4),过点F作FH⊥x轴于点H.∵tan∠CGO=,tan∠FGH=,∴=,∴=,∵OC=3,HF=4,OH=m,∴,∴OG=3m.∴,∴∴、、能构成直角三角形面积是所以、、能构成直角三角形面积是【点睛】此题考查二次函数综合题,解题关键在于掌握二次函数图象的问题转换.21、该段运河的河宽为.【分析】过D作DE⊥AB,可得四边形CHED为矩形,由矩形的对边相等得到两对对边相等,分别在直角三角形ACH与直角三角形BDE中,设CH=DE=xm,利用锐角三角函数定义表示出AH与BE,由AH+HE+EB=AB列出方程,求出方程的解即可得到结果.【详解】解:过作,可得四边形为矩形,,设,在中,,,在中,,,由,得到,解得:,即,则该段运河的河宽为.【点睛】考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.22、(1)画图见解析;(2)画图见解析,C2的坐标为(﹣6,4).【解析】试题分析:利用关于点对称的性质得出的坐标进而得出答案;
利用关于原点位似图形的性质得出对应点位置进而得出答案.试题解析:(1)△A1BC1如图所示.(2)△A2B2C2如图所示,点C2的坐标为(-6,4).23、(1)详见解析;(2)详见解析.【分析】(1)利用平行线的性质及对顶角相等即可证明∽;(2)由相似三角形的性质可知,由AD∥BC可知,通过等量代换即可证明结论.【详解】(1)证明:∥∽(2)证明:∵∽∵AD∥BC,∴又∵CM=BM,【点睛】本题主要考查相似三角形的判定及性质,掌握相似三角形的判定方法及性质是解题的关键.24、(1);(2)P(1,0);(3)M(1,)(1,)(1,﹣1)(1,0).【分析】(1)直接将A、B、C三点坐标代入抛物线的解析式中求出待定系数即可;(2)由图知:A.B点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知,直线l与x轴的交点,即为符合条件的P点;(3)由于△MAC的腰和底没有明确,因此要分三种情况来讨论:①MA=AC、②MA=MC、③AC=MC;可先设出M点的坐标,然后用M点纵坐标表示△MAC的三边长,再按上面的三种情况列式求解.【详解】解:(1)将A(﹣1,0)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 满井游记课件
- 2024年度物业租赁合同(办公场所)2篇
- 二零二四年度企业清算与法律服务合同
- 体育赛事承办合同
- 简易活动板房施工合同范本共2篇
- 2024年度电子商务供应链管理合同2篇
- 2024年度夫妻财产分割及债务处理协议
- 化工设计-ASPEN软件:第六章分离设备-塔
- 人教版九年级化学第四单元4化学式与化合价课时1化学式及其读写分层作业课件
- 烧伤整形美容护理教学授课
- 浙江省交通投资集团有限公司管理招聘真题
- DB50-T 771-2017 地下管线探测技术规范
- 2024年PMP项目管理师考试试卷及答案指导
- 教学计划(教案)-2024-2025学年人教版(2024)美术一年级上册
- 2024年新高考Ⅰ卷、Ⅱ卷、甲卷诗歌鉴赏试题讲评课件
- 任务二:诗歌朗诵教案 人教版
- 高职院校高水平现代物流管理专业群建设方案(现代物流管理专业群)
- 药用辅料生产质量管理规范
- 【小学语文中高年级单元整体设计的实践探究2000字(论文)】
- 全国清华大学版信息技术七年级下册第2单元第4课《动物的力量-认识高效运算的函数》教学设计
- 2023年江西飞行学院招聘考试真题
评论
0/150
提交评论