初中数学函数研究案例_第1页
初中数学函数研究案例_第2页
初中数学函数研究案例_第3页
初中数学函数研究案例_第4页
初中数学函数研究案例_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

初中数学函数研究案例用”的教学研究与案例评析

1.注意由浅入深、循序渐进地建立函数与方程的关系

对函数与方程的关系有一个逐步认识的过程,教材遵循了由浅入深、循序渐进的原则.分三步来展开这部分的内容.第一步,从学生认为较简单的一元二次方程与相应的二次函数入手,由具体到一般,建立一元二次方程的根与相应的二次函数的零点的联系,然后将其推广到一般方程与相应的函数的情形.第二步,在用二分法求方程近似解的过程中,通过函数图象和性质研究方程的解,体现函数与方程的关系.第三步,在函数模型的应用过程中,通过建立函数模型以及模型的求解,更全面地体现函数与方程的关系逐步建立起函数与方程的联系.

2.注意函数与实际问题的联系,体现数学建模的思想

我们生活在一个充满变化的多彩世界,其中存在大量问题可以通过体现变量关系的函数模型得到解决,这就为函数的应用的教学提供了大量的实际背景.在本章中,实际问题情境贯穿于教科书的始终,无论是对几种不同增长的函数模型的研究,还是对函数模型的应用举例的学习,都是在解决实际问题的过程中进行的,全章大多数内容都是围绕实际问题的讨论而展开的,反映了函数与现实之间的关系,能提高学生对函数是解决现实问题的一种重要数学模型的认识.

利用函数模型解决实际问题是数学应用的一个重要方面.教材一方面注意让学生认识常见函数模型的特点,另一方面还注意选择贴近学生生活实际的各种问题,引导学生用已学过的函数模型分析和解决它们,使函数的学习与实际问题紧密联系,并在解决问题的过程中将数学模型的思想逐步细化,从更高的层面上认识函数与实际问题的关系.

3.注意以函数模型的应用为主线,带动相关知识的展开

本章除了函数模型的应用之外,还要介绍函数的零点与方程的根的关系,用二分法求方程的近似解,以及几种不同增长的函数模型.教科书在处理上,以函数模型的应用这一内容为载体。可见函数的重要性。

结合个人教学实践和课程内容谈谈学生在学习“函数的应用”部分时常见的问题有哪些?简析一下主要原因。

函数是刻画和研究现实世界变化规律的重要模型,也是初中数学里代数领域的重要内容,它在初中数学中具有较强的综合性。对于学生来说,初学函数,普遍认为难,在理解和认识上有偏差,经常出现错误。

学生在学习“函数的应用”部分时常见的问题有:

一:函数概念混淆。

原因:

对函数的概念理解不透造成的误区

措施1、我们在教学时要从函数的概念出发,加以强调函数概念:

措施2、对于做选择题时,应教给学生检查是否每一个答案都符合题意.

二.作图不准确

原因:忽视条件造成函数值随自变量的变化趋势

措施:要让学生自己通过画图,观察、归纳、总结出函数的性质。所以,在判断函数的变化趋势时,一定要求学生画图,由图像直观性去理解函数值的变化情况。

三学生不能根据图像回答。没有做到图形结合。

原因:没有形成空间想象力,

措施:加强作图,运用图形加强对函数性质理解。

总之,我们老师在教学的时候,除了让学生掌握各类函数的概念、性质以外,还要特别注意教会学生运用数形结合的数学思想,让学生结合函数图像去解题,循序渐进地学习函数,避免走入误区。

问题三

忽视素质

在平面直角坐标系中描点这些工作在上面都做好了,代数模型的综然后只是口头叙述过程,没有在黑板上引导、学生动手画图这一过程,就要求学生来归纳小结,教师进行总结归纳后面就是例题和练习题的讲解。(以上的分析讲解不到10分钟,在例题讲解、练习与分析的过程中,学生也积极参与交流、踊跃发言)课后评课时,上课教师直言,没有什么好讲的,有时讲与不讲做题效果差不多,这样做也是为了节省出更多时间来解题.其他的一些听课教师也表示能理解这一观点.二次函数的图像是研究二次函数的重要工具,也是二次函数的教学难点所在,在教学中要注意引导学生把握二次函数图像的特点。

二次函数的图像教学中应用了从特殊到一般的教学规律,这一教学过程是学生“独立思考、自主探索、师生互动”的学习过程.通过这样的学习过程,学生经历的是探索的过程,领悟的是数学学习的方法,得到的是自己探究的成果,体验的是成功的喜悦.因为学生在学习中获得的自信、科学态度和理性精神,比单纯拥有知识更有价值.让学生体验学习的进程,实现“知、能、情、法、行”的有机统一,让课堂更好地为学生的成长服务.这位教师上课为了突出“重点”、节省时间、提高“效率”,直接将结论“告知”给学生,我以为这是一中急功近利的思想,从短期看,可能效果(这里指学生解题)不会差,此做法也许不无道理,但从落实新课程教学理念,从有利于学生的长远发展、提高学生的数学素质来看,结论也许就是相反的了.有的老师担心如果学生真的动起来,教师觉得难以控制,许多想不到的问题会突然冒出来,的确,这会给教师的课堂调整带来很大的挑战,但课堂活跃起来了,就迫使教师更精细地钻研教材、研究学生,设计多套预案,提高解题能力。事实证明,以往那种纯粹的老师讲、学生听,老师示范、学生模仿的教学模式,不利于促进学生自主发展。课堂教学要正确处理“知识与技能”与“过程与方法”的关系,能力培养要渗透在知识落实的过程中,“冰冷的、无言的”数学知识只有通过“过程”方能变成“火热的思考。

问题四

填鸭式教学

老师在讲解一道例题:“已知二次函数y=mx2+(m-1)x+m-1有最小值0,求m的值.”老师想让学生自己练习后提问,提问时学生们七嘴八舌,教师点名,甲说应为,已说等于1,丙说等于1,教师说“对,请坐下”。接着教师顺利做完本题。而对于那些错误的答案不予理睬,没有与他们交流、订正,我估计那些答错的同学也不知道自己错在哪里.暴露错误的过程,能提高纠错的针对性,但题目只是例子,是训练学生思维的目标,还应再进一步引导学生反思错误的成因,通过自查自纠、反思交流、自我评价等各种形式,纠正错误,这并不意味着削弱教师的主导作用,而是要求教师从更高的观点去指导学生把评议引向深入,以提高学生的“元认知”能力,引领学生走出固有认知的“迷宫”,体验数学学习给人带来的成功喜悦感.从这一意义上讲,来自学生的错误,确实是一笔宝贵的课程资源,有待于我们做深入的开发和研究.著名科学家爱因斯坦指出:提出一个问题往往比解决一个问题更重要,因为解决一个问题也许是一个数学上或实验上的技能而已,而提出新的问题、新的可能性、从新角度去看旧的问题,都需要有创造性的想象力,而且标志着科学的真正进步。无论在课堂上还是课外,我们总要认真的倾听学生的表达,鼓励学生发表自己的观点,鼓励学生质疑,允许学生出错,充分肯定学生的独立见解,对学生的思想、观点、表达的正确程度以及表达方式予以观察和指导。1.注意由浅入深、循序渐进地建立函数与方程的关系

对函数与方程的关系有一个逐步认识的过程,教材遵循了由浅入深、循序渐进的原则.分三步来展开这部分的内容.第一步,从学生认为较简单的一元二次方程与相应的二次函数入手,由具体到一般,建立一元二次方程的根与相应的二次函数的零点的联系,然后将其推广到一般方程与相应的函数的情形.第二步,在用二分法求方程近似解的过程中,通过函数图象和性质研究方程的解,体现函数与方程的关系.第三步,在函数模型的应用过程中,通过建立函数模型以及模型的求解,更全面地体现函数与方程的关系逐步建立起函数与方程的联系.

2.注意函数与实际问题的联系,体现数学建模的思想

我们生活在一个充满变化的多彩世界,其中存在大量问题可以通过体现变量关系的函数模型得到解决,这就为函数的应用的教学提供了大量的实际背景.在本章中,实际问题情境贯穿于教科书的始终,无论是对几种不同增长的函数模型的研究,还是对函数模型的应用举例的学习,都是在解决实际问题的过程中进行的,全章大多数内容都是围绕实际问题的讨论而展开的,反映了函数与现实之间的关系,能提高学生对函数是解决现实问题的一种重要数学模型的认识.

利用函数模型解决实际问题是数学应用的一个重要方面.教材一方面注意让学生认识常见函数模型的特点,另一方面还注意选择贴近学生生活实际的各种问题,引导学生用已学过的函数模型分析和解决它们,使函数的学习与实际问题紧密联系,并在解决问题的过程中将数学模型的思想逐步细化,从更高的层面上认识函数与实际问题的关系.

3.注意以函数模型的应用为主线,带动相关知识的展开

本章除了函数模型的应用之外,还要介绍函数的零点与方程的根的关系,用二分法求方程的近似解,以及几种不同增长的函数模型.教科书在处理上,以函数模型的应用这一内容为载体。可见函数的重要性。一、教材研读与剖析1.教材分析:本节课内容是在学生学习了一次函数、反比例函数等基础上的学习.本章我们研究的是二次函数,要求学生通过探究实际问题与二次函数的关系,掌握利用顶点坐标解决最大值(或最小值)问题的方法.学生要经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体验如何描述变量之间的数量关系,感悟新旧知识的关系,深刻的体会数学中的类比思想方法.2.教学目标:第一,理解和掌握二次函数的概念、性质,会做二次函数的图像,掌握二次函数的形式;第二,会建立二次函数模型,并能确定实际问题的自变量的取值范围;第三,会用待定系数法求二次函数的解析式;第四,从实际情景和实例中让学生探索分析,建立两个变量之间的二次函数,使学生能够理解如何将实际问题转化为数学问题,学会用数学符号和数学方法解决最值问题,让学生体会到学习数学的价值,从而提高学生学习数学的兴趣.3.教学重点和难点:第一,经历探究和表示二次函数的过程,获得二次函数的定义;第二,能够表示简单变量之间的二次函数关系;第三,探究利用二次函数解决实际生活中的最值问题.本节难点在于如何将实际问题转化为二次函数的问......初中数学《二次函数》的教学案例分析及反思

一、教材研读与剖析

1.教材分析:本节课内容是在学生学习了一次函数、反比例函数等基础上的学习.本章我们研究的是二次函数,要求学生通过探究实际问题与二次函数的关系,掌握利用顶点坐标解决最大值(或最小值)问题的方法.学生要经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体验如何描述变量之间的数量关系,感悟新旧知识的关系,深刻的体会数学中的类比思想方法.

2.教学目标:第一,理解和掌握二次函数的概念、性质,会做二次函数的图像,掌握二次函数的形式;第二,会建立二次函数模型,并能确定实际问题的自变量的取值范围;第三,会用待定系数法求二次函数的解析式;第四,从实际情景和实例中让学生探索分析,建立两个变量之间的二次函数,使学生能够理解如何将实际问题转化为数学问题,学会用数学符号和数学方法解决最值问题,让学生体会到学习数学的价值,从而提高学生学习数学的兴趣.

3.教学重点和难点:第一,经历探究和表示二次函数的过程,获得二次函数的定义;第二,能够表示简单变量之间的二次函数关系;第三,探究利用二次函数解决实际生活中的最值问题.本节难点在于如何将实际问题转化为二次函数的问题,其中“合作性学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力.

二、教学过程与设计

(1)温故而知新,回顾有关函数的知识,激发兴趣.教师在课堂的开始,可以帮助学生回忆有关函数的定义——在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量——做进一步巩固.对“正比例函数、一次函数、反比例函数”的知识点进行总结,并在ppt上给出一次函数y=kx+b(其中k,b是常数,且k≠0)正比例函数y=kx(k是不为0的常数)反比例函数y=■(x是不为0的常数)的形式.

(2)创设问题情境,激发兴趣.教师在ppt上给出实际问题一,例如:现有60米的篱笆要围成一个矩形场地,若矩形的长为10米,它的面积是多少?若矩形的长分别为15米、20米、30米时,它的面积分别是多少?从上两问同学们发现了什么?教师提问后,学生可独立回答.在活动中,教师应重点关注:学生是否能准确的建立函数关系;学生是否能利用已学的函数知识求出最大面积;学生是否能准确的讨论出自变量的取值范围.

问题的设计,旨在运用函数模型让学生体会数学的实际价值,学会用函数的观点认识问题,解决问题,让学生在合作学习中共同解决问题,培养合作精神.最后,提出问题:由矩形问题你有什么收获?让学生经过短时间的讨论与思考后,师生共同归纳总结出函数解析式y=ax2+bx+c(a,b,c是常数,a≠0)的形式.在ppt上给出概念:我们把形如y=ax2+bx+c(其中a,b,c是常数,a≠0)的函数叫做二次函数.称a为二次项系数,b为一次项系数,c为常数项.通过层层设问,引导学生不断思考,积极探索,让学生感受到数学的应用价值,激发其学习的热情.

(3)利用图像激发兴趣.学习性质最好的方法就是根据图像来探索.例如,教师可以给出以下的问题,让学生进行自由探索:填空:根据下边已画好抛物线y=-2x2的顶点坐标是_____,对称轴是_____,在_____侧,即x_____0时,y随着x的增大而增大;在_____侧,即x_____0时,y随着x的增大而减小.当x=_____时,函数y的最大值是____.当x____0时,y<0.教师让学生根据问题进行探究,并归纳出:二次函数y=ax2+bx+c(a≠0)的图像和性质,顶点坐标与对称轴,位置与开口方向,增减性与最值.

(4)小组合作探索二次函数与一元二次方程.教师向学生展示二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图像如图所示.

教师引导学生以小组为单位,对

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论