2023届广东省广州黄埔区五校联考数学九上期末联考模拟试题含解析_第1页
2023届广东省广州黄埔区五校联考数学九上期末联考模拟试题含解析_第2页
2023届广东省广州黄埔区五校联考数学九上期末联考模拟试题含解析_第3页
2023届广东省广州黄埔区五校联考数学九上期末联考模拟试题含解析_第4页
2023届广东省广州黄埔区五校联考数学九上期末联考模拟试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列一元二次方程中,两个实数根之和为2的是()A.2x2+x﹣2=0 B.x2+2x﹣2=0 C.2x2﹣x﹣1=0 D.x2﹣2x﹣2=02.如图是用围棋棋子在6×6的正方形网格中摆出的图案,棋子的位置用有序数对表示,如A点为(5,1),若再摆一黑一白两枚棋子,使这9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是()A.黑(1,5),白(5,5) B.黑(3,2),白(3,3)C.黑(3,3),白(3,1) D.黑(3,1),白(3,3)3.如果反比例函数y=的图象经过点(﹣5,3),则k=()A.15 B.﹣15 C.16 D.﹣164.将抛物线向右平移1个单位,再向上平移3个单位,得到的抛物线是()A. B.C. D.5.如图,二次函数的图象经过点,下列说法正确的是()A. B. C. D.图象的对称轴是直线6.从口袋中随机摸出一球,再放回口袋中,不断重复上述过程,共摸了150次,其中有50次摸到黑球,已知口袋中有黑球10个和若干个白球,由此估计口袋中大约有多少个白球()A.10个 B.20个 C.30个 D.无法确定7.若,则的值为()A. B. C. D.8.已知如图1所示的四张牌,若将其中一张牌旋转180°后得到图1.则旋转的牌是()A. B. C. D.9.如图,将△ABC绕点C顺时针旋转50°得△DEC,若AC⊥DE,则∠BAC等于()A.30° B.40° C.50° D.60°10.如图,在△ABC中,DE//BC,,S梯形BCED=8,则S△ABC是()A.13 B.12 C.10 D.9二、填空题(每小题3分,共24分)11.如图,⊙O的半径OC=10cm,直线l⊥OC,垂足为H,交⊙O于A,B两点,AB=16cm,直线l平移____________cm时能与⊙O相切.12.如图,的顶点都在方格纸的格点上,则_______.13.一元二次方程x2﹣x=0的根是_____.14.如图,在平行四边形中,是边上的点,,连接,相交于点,则_________.15.一个4米高的电线杆的影长是6米,它临近的一个建筑物的影长是36米,则这个建筑物的高度是__________.16.如图,在菱形中,边长为10,.顺次连结菱形各边中点,可得四边形;顺次连结四边形各边中点,可得四边形;顺次连结四边形各边中点,可得四边形;按此规律继续下去….则四边形的周长是_________.17.如图,在四边形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13,点P从点A出发,以3个单位/s的速度沿AD→DC向终点C运动,同时点Q从点B出发,以1个单位/s的速度沿BA向终点A运动,在运动期间,当四边形PQBC为平行四边形时,运动时间为__________秒.18.计算:2sin245°﹣tan45°=______.三、解答题(共66分)19.(10分)如图,直线y=﹣x+2与反比例函数y=的图象在第二象限内交于点A,过点A作AB⊥x轴于点B,OB=1.(1)求该反比例函数的表达式;(2)若点P是该反比例函数图象上一点,且△PAB的面积为3,求点P的坐标.20.(6分)如图,BC是半圆O的直径,D是弧AC的中点,四边形ABCD的对角线AC、BD交于点E.(1)求证:△DCE∽△DBC;(2)若CE=,CD=2,求直径BC的长.21.(6分)如图,已知直线与两坐标轴分别交于A、B两点,抛物线经过点A、B,点P为直线AB上的一个动点,过P作y轴的平行线与抛物线交于C点,抛物线与x轴另一个交点为D.(1)求图中抛物线的解析式;(2)当点P在线段AB上运动时,求线段PC的长度的最大值;(3)在直线AB上是否存在点P,使得以O、A、P、C为顶点的四边形是平行四边形?若存在,请求出此时点P的坐标,若不存在,请说明理由.22.(8分)如图,在中,AB=AC,以AB为直径作⊙O,分别交BC于点D,交CA的延长线于点E,过点D作于点H,连接DE交线段OA于点F.(1)试猜想直线DH与⊙O的位置关系,并说明理由;(2)若AE=AH,EF=4,求DF的值.23.(8分)如图,抛物线y=ax2+bx过A(4,0)B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H(1)求抛物线的解析式.(2)直接写出点C的坐标,并求出△ABC的面积.(3)点P是抛物线BA段上一动点,当△ABP的面积为3时,求出点P的坐标.24.(8分)1896年,挪威生理学家古德贝发现,每个人有一条腿迈出的步子比另一条腿迈出的步子长的特点,这就导致每个人在蒙上眼睛行走时,虽然主观上沿某一方向直线前进,但实际上走出的是一个大圆圈!这就是有趣的“瞎转圈”现象.经研究,某人蒙上眼睛走出的大圆圈的半径米是其两腿迈出的步长之差厘米的反比例函数,其图象如图所示.请根据图象中的信息解决下列问题:(1)求与之间的函数表达式;(2)当某人两腿迈出的步长之差为厘米时,他蒙上眼睛走出的大圆圈的半径为______米;(3)若某人蒙上眼睛走出的大圆圈的半径不小于米,则其两腿迈出的步长之差最多是多少厘米?25.(10分)如图①,抛物线y=x2﹣(a+1)x+a与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积为1.(1)求这条抛物线相应的函数表达式;(2)在抛物线上是否存在一点P,使得∠POB=∠CBO,若存在,请求出点P的坐标;若不存在,请说明理由;(3)如图②,M是抛物线上一点,N是射线CA上的一点,且M、N两点均在第二象限内,A、N是位于直线BM同侧的不同两点.若点M到x轴的距离为d,△MNB的面积为2d,且∠MAN=∠ANB,求点N的坐标.26.(10分)某商场“六一”期间进行一个有奖销售的活动,设立了一个可以自由转动的转盘(如图),并规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品(若指针落在两个区域的交界处,则重新转动转盘).下表是此次促销活动中的一组统计数据:转动转盘的次数n1002004005008001000落在“可乐”区域的次数m60122240298604落在“可乐”区域的频率0.60.610.60.590.604(1)计算并完成上述表格;(2)请估计当n很大时,频率将会接近__________;假如你去转动该转盘一次,你获得“可乐”的概率约是__________;(结果精确到0.1)(3)在该转盘中,表示“车模”区域的扇形的圆心角约是多少度?

参考答案一、选择题(每小题3分,共30分)1、D【分析】利用根与系数的关系进行判断即可.【详解】方程1x1+x﹣1=0的两个实数根之和为;方程x1+1x﹣1=0的两个实数根之和为﹣1;方程1x1﹣x﹣1=0的两个实数根之和为;方程x1﹣1x﹣1=0的两个实数根之和为1.故选D.【点睛】本题考查了根与系数的关系:若x1,x1是一元二次方程ax1+bx+c=0(a≠0)的两根时,x1+x1,x1x1.2、D【分析】利用轴对称图形以及中心对称图形的性质即可解答.【详解】如图所示:黑(3,1),白(3,3).故选D.【点睛】此题主要考查了旋转变换以及轴对称变换,正确把握图形的性质是解题关键.3、D【分析】将点的坐标代入反比例函数解析式中可求k的值.【详解】∵反比例函数的图象经过点(﹣5,3),∴k+1=﹣5×3=﹣15,∴k=﹣16故选:D.【点睛】本题考查了反比例函数图象上点的坐标特征,掌握图象上的点的坐标满足解析式是本题的关键.4、D【分析】由题意可知原抛物线的顶点及平移后抛物线的顶点,根据平移不改变抛物线的二次项系数可得新的抛物线解析式.【详解】解:由题意得原抛物线的顶点为(0,0),∴平移后抛物线的顶点为(1,3),∴得到的抛物线解析式为y=2(x-1)2+3,故选:D.【点睛】本题考查二次函数的几何变换,熟练掌握二次函数的平移不改变二次项的系数得出新抛物线的顶点是解决本题的关键.5、D【分析】根据抛物线与y轴交点的位置即可判断A选项;根据抛物线与x轴有两个交点即可判断B选项;由图象可知,当x=1时,图象在x轴的下方可知,故C错误;根据图象经过点两点,即可得出对称轴为直线.【详解】解:A、由图可知,抛物线交于y轴负半轴,所以c<0,故A错误;B、由图可知,抛物线与x轴有两个交点,则,故B错误;C、由图象可知,当x=1时,图象在x轴的下方,则,故C错误;D、因为图象经过点两点,所以抛物线的对称轴为直线,故D正确;故选:D.【点睛】本题考查了二次函数图象与系数的关系,解题的关键是掌握二次函数的图象和性质.6、B【详解】解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是,设口袋中大约有x个白球,则,解得x=1.经检验:x=1是原方程的解故选B.7、A【分析】根据比例的性质,可用b表示a,根据分式的性质,可得答案.【详解】由,得4b=a−b.,解得a=5b,故选:A.【点睛】本题考查了比例的性质,利用比例的性质得出b表示a是解题关键.8、A【解析】解:观察发现,只有是中心对称图形,∴旋转的牌是.故选A.9、B【分析】根据旋转的性质可求得∠ACD,根据互余关系可求∠D,根据对应角相等即可得∠BAC的大小.【详解】解:依题意得旋转角∠ACD=50°,由于AC⊥DE,由互余关系可得∠D=90°-50°=40°,由旋转后对应角相等,得∠BAC=∠D=40°,故B选项正确.【点睛】本题考查了图形的旋转变化,要分清是顺时针还是逆时针旋转,旋转了多少度,难度不大,但容易出错,细心点即可.10、D【分析】由DE∥BC,可证△ADE∽△ABC,根据相似三角形的面积比等于相似比的平方,求△ADE的面积,再加上BCED的面积即可.【详解】解:∵DE∥BC,∴△ADE∽△ABC,∴===,∴,∵S梯形BCED=8,∴∴故选:D【点睛】本题考查了相似三角形的判定与性质.关键是利用平行线得相似,利用相似三角形的面积的性质求解.二、填空题(每小题3分,共24分)11、4或1【分析】要使直线l与⊙O相切,就要求CH与DH,要求这两条线段的长只需求OH弦心距,为此连结OA,由直线l⊥OC,由垂径定理得AH=BH,在Rt△AOH中,求OH即可.【详解】连结OA∵直线l⊥OC,垂足为H,OC为半径,∴由垂径定理得AH=BH=AB=8∵OA=OC=10,在Rt△AOH中,由勾股定理得OH=,CH=OC-OH=10-6=4,DH=2OC-CH=20-4=1,,直线l向左平移4cm时能与⊙O相切或向右平移1cm与⊙O相切.故答案为:4或1.【点睛】本题考查平移直线与与⊙O相切问题,关键是求弦心距OH,会利用垂径定理解决AH,会用勾股定理求OH,掌握引辅助线,增加已知条件,把问题转化为三角形形中解决.12、【分析】如下图,先构造出直角三角形,然后根据sinA的定义求解即可.【详解】如下图,过点C作AB的垂线,交AB延长线于点D设网格中每一小格的长度为1则CD=1,AD=3∴在Rt△ACD中,AC=∴sinA=故答案为:.【点睛】本题考查锐角三角函数的求解,解题关键是构造出直角三角形ACD.13、x1=0,x2=1【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】方程变形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为x1=0,x2=1.【点睛】此题考查了解一元二次方程﹣因式分解法,熟练掌握方程的解法是解本题的关键.14、【分析】设△AEO的面积为a,由平行四边形的性质可知AE∥CD,可证△AEO∽△CDO,相似比为AE:CD=EO:DO=3:4,由相似三角形的性质可求△CDO的面积,由等高的两个三角形面积等于底边之比,可求△ADO的面积,得出的值.【详解】解:设△AEO的面积为a,∵四边形ABCD是平行四边形,∴AB∥CD,且AB=CD,∵,∴AE=CD=AB,由AB∥CD知△AEO∽△CDO,∴,∴,∵设△AEO的面积为a,,∴S△CDO=,∵△ADO和△AEO共高,且EO:DO=3:4,,∴S△ADO=,则S△ACD=S△ADO+S△CDO=,∴故答案为:.【点睛】本题考查了相似三角形的判定与性质.关键是由平行线得出相似三角形,利用相似比求相似三角形的面积,等高的三角形面积.15、1米【分析】设建筑物的高度为x,根据物高与影长的比相等,列方程求解.【详解】解:设建筑物的高度为x米,由题意得,

,解得x=1.故答案为:1米.【点睛】本题考查了相似三角形的应用,通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决.16、【分析】根据菱形的性质,三角形中位线的性质以及勾股定理求出四边形各边长,得出规律求出即可.【详解】∵菱形ABCD中,边长为10,∠A=60°,设菱形对角线交于点O,∴,∴,,∴,,顺次连结菱形ABCD各边中点,

∴△AA1D1是等边三角形,四边形A2B2C2D2是菱形,

∴A1D1=AA1=AB=5,C1D1=AC=5,A2B2=C2D2=C2B2=A2D2=AB=5,∴四边形A2B2C2D2的周长是:5×4=20,

同理可得出:A3D3=5×,C3D3=C1D1=5,A5D5=5,C5D5=C3D3=5,∴四边形A2019B2019C2019D2019的周长是:故答案为:【点睛】本题主要考查了菱形的性质以及矩形的性质和中点四边形的性质等知识,根据已知得出边长变化规律是解题关键.17、3【分析】首先利用t表示出CP和CQ的长,根据四边形PQBC是平行四边形时CP=BQ,据此列出方程求解即可.【详解】解:设运动时间为t秒,如图,则CP=12-3t,BQ=t,四边形PQBC为平行四边形12-3t=t,解得:t=3,故答案为【点睛】本题考查了平行四边形的判定及动点问题,解题的关键是化动为静,分别表示出CP和BQ的长,难度不大.18、0【解析】原式==0,故答案为0.三、解答题(共66分)19、(1);(2)(﹣3,1)或(1,﹣3).【分析】(1)先利用一次解析式确定A点坐标为(﹣1,3),然后把A点坐标代入y=中求出k得到反比例函数解析式;(2)设P(t,﹣),利用三角形面积公式得到×3×|﹣+1|=3,然后解方程求出t,从而得到P点坐标.【详解】(1)∵AB⊥x轴于点B,OB=1.∴A点的横坐标为﹣1,当x=﹣1时,y=﹣x+2=3,则A(﹣1,3),把A(﹣1,3)代入y=得k=﹣1×3=﹣3,∴反比例函数解析式为;(2)设P(t,﹣),∵△PAB的面积为3,∴×3×|﹣+1|=3,解得t=﹣3或t=1,∴P点坐标为(﹣3,1)或(1,﹣3).【点睛】此题考查待定系数法求函数解析式,一次函数与反比例函数的图象结合求几何图形的面积.20、(1)见解析;(2)2【分析】(1)由等弧所对的圆周角相等可得∠ACD=∠DBC,且∠BDC=∠EDC,可证△DCE∽△DBC;(2)由勾股定理可求DE=1,由相似三角形的性质可求BC的长.【详解】(1)∵D是弧AC的中点,∴,∴∠ACD=∠DBC,且∠BDC=∠EDC,∴△DCE∽△DBC;(2)∵BC是直径,∴∠BDC=90°,∴DE1.∵△DCE∽△DBC,∴,∴,∴BC=2.【点睛】本题考查了圆周角定理、相似三角形的判定和性质、勾股定理等知识,证明△DCE∽△DBC是解答本题的关键.21、(1);(2)当时,线段PC有最大值是2;(3),,【分析】把x=0,y=0分别代入解析式可求点A,点B坐标,由待定系数法可求解析式;设点C,可求PC,由二次函数的性质可求解;设点P的坐标为(x,−x+2),则点C,分三种情况讨论,由平行四边形的性质可出点P的坐标.【详解】解:(1)可求得A(0,2),B(4,0)∵抛物线经过点A和点B∴把(0,2),(4,0)分别代入得:解得:∴抛物线的解析式为.(2)设点P的坐标为(x,−x+2),则C()∵点P在线段AB上∴∴当时,线段PC有最大值是2(3)设点P的坐标为(x,−x+2),∵PC⊥x轴,∴点C的横坐标为x,又点C在抛物线上,∴点C(x,)①当点P在第一象限时,假设存在这样的点P,使四边形AOPC为平行四边形,则OA=PC=2,即,化简得:,解得x1=x2=2把x=2代入则点P的坐标为(2,1)②当点P在第二象限时,假设存在这样的点P,使四边形AOCP为平行四边形,则OA=PC=2,即,化简得:,解得:把,则点P的坐标为;③当点P在第四象限时,假设存在这样的点P,使四边形AOCP为平行四边形,则OA=PC=2,即,化简得:,解得:把则点P的坐标为综上,使以O、A.

P、C为顶点的四边形是平行四边形,满足的点P的坐标为.【点睛】本题是二次函数综合题,考查待定系数法求函数解析式,最值问题,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用分类讨论的思想解决问题.22、(1)直线与⊙O相切,理由见解析;(2)DF=6【分析】(1)连接,根据等腰三角形的性质可得,,可得,即可证明OD//AC,根据平行线的性质可得∠ODH=90°,即可的答案;(2)连接,由圆周角定理可得∠B=∠E,即可证明∠C=∠E,可得CD=DE,由AB是直径可得∠ADB=90°,根据等腰三角形“三线合一”的性质可得HE=CH,BD=CD,可得OD是△ABC的中位线,即可证明,根据相似三角形的性质即可得答案.【详解】(1)直线与⊙O相切,理由如下:如图,连接,∵,∴,∵,∴,∴,,∵,∴∠ODH=∠DHC=90°,∴DH是⊙O的切线.(2)如图,连接,∵∠B和∠E是所对的圆周角,∴,∵∴∴DC=DE∵,∴HE=CH设AE=AH=x,则,,∵是⊙O的直径,∴∠ADB=90°∵AB=AC∴BD=CD∴OD是的中位线,,,∴,∴,∵EF=4∴DF=6【点睛】本题考查等腰三角形的性质、圆周角定理、切线的判定与性质及相似三角形的判定与性质,经过半径的外端点并且垂直于这条半径的直线是圆的切线,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似;熟练掌握相关性质及定理是解题关键.23、(1)y=-x2+4x;(2)点C的坐标为(3,3),3;(3)点P的坐标为(2,4)或(3,3)【分析】(1)将点A、B的坐标代入即可求出解析式;(2)求出抛物线的对称轴,根据对称性得到点C的坐标,再利用面积公式即可得到三角形的面积;(3)先求出直线AB的解析式,过P点作PE∥y轴交AB于点E,设其坐标为P(a,-a2+4a),得到点E的坐标为(a,-a+4),求出线段PE,即可根据面积相加关系求出a,即可得到点P的坐标.【详解】(1)把点A(4,0),B(1,3)代入抛物线y=ax2+bx中,得,得,∴抛物线的解析式为y=-x2+4x;(2)∵,∴对称轴是直线x=2,∵B(1,3),点C、B关于抛物线的对称轴对称,∴点C的坐标为(3,3),BC=2,点A的坐标是(4,0),BH⊥x轴,∴S△ABC==;(3)设直线AB的解析式为y=mx+n,将B,A两点的坐标代入得,解得,∴y=-x+4,过P点作PE∥y轴交AB于点E,P点在抛物线y=-x2+4x的AB段,设其坐标为(a,-a2+4a),其中1<a<4,则点E的坐标为(a,-a+4),∴PE=(-a2+4a)-(-a+4)=-a2+5a-4,∴S△ABP=S△PEB+S△PEA=×PE×3=(-a2+5a-4)=,得a1=2,a2=3,P1(2,4),P2(3,3)即点C,综上所述,当△ABP的面积为3时,点P的坐标为(2,4)或(3,3).【点睛】此题是二次函数的综合题,考查待定系数法,对称点的性质,图象与坐标轴的交点,动点问题,是一道比较基础的综合题.24、(1);(2);(3)步数之差最多是厘米,【分析】(1)用待定系数法即可求得反比例函数的解析式;(2)即求当时的函数值;(3)先求得当时的函数值,再判断当时的函数值的范围.【详解】(1)设反比例函数解析式为,将,代入解析式得:,解得:,反比例函数解析式为;(2)将代入得;(3)反比例函数,在每一象限随增大而减小,当时,,解得:,当时,,步数之差最多是厘米.【点睛】本题考查了用待定系数法求反比例函数的解析式,掌握反比例函数图象上点的坐标特征是正确解答本题的关键.25、(1)y=x2+2x﹣3;(2)存在,点P坐标为或;(3)点N的坐标为(﹣4,1)【分析】(1)分别令y=0,x=0,可表示出A、B、C的坐标,从而表示△ABC的面积,求出a的值继而即可得二次函数解析式;(2)如图①,当点P在x轴上方抛物线上时,平移BC所在的直线过点O交x轴上方抛物线于点P,则有BC∥OP,此时∠POB=∠CBO,联立抛物线得解析式和OP所在直线的解析式解方程组即可求解;当点P在x轴下方时,取BC的中点D,易知D点坐标为(,),连接OD并延长交x轴下方的抛物线于点P,由直角三角形斜边中线定理可知,OD=BD,∠DOB=∠CBO即∠POB=∠CBO,联立抛物线的解析式和OP所在直线的解析式解方程组即可求解.(3)如图②,通过点M到x轴的距离可表示△ABM的面积,由S△ABM=S△BNM,可证明点A、点N到直线BM的距离相等,即AN∥BM,通过角的转化得到AM=BN,设点N的坐标,表示出BN的距离可求出点N.【详解】(1)当y=0时,x2﹣(a+1)x+a=0,解得x1=1,x2=a,当x=0,y=a∴点C坐标为(0,a),∵C(0,a)在x轴下方∴a<0∵点A位于点B的左侧,∴点A坐标为(a,0),点B坐标为(1,0),∴AB=1﹣a,OC=﹣a,∵△ABC的面积为1,∴,∴a1=﹣3,a2=4(因为a<0,故舍去),∴a=﹣3,∴y=x2+2x﹣3;(2)设直线BC:y=kx﹣3,则0=k﹣3,∴k=3;①当点P在x轴上方时,直线OP的函数表达式为y=3x,则,∴,,∴点P坐标为;②当点P在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论