版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省赣州市蓉江新区潭东中学2025届九年级数学第一学期期末学业水平测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.若双曲线y=在每一个象限内,y随x的增大而减小,则k的取值范围是()A.k<3 B.k≥3 C.k>3 D.k≠32.正五边形内接于圆,连接分别与交于点,,连接若,下列结论:①②③四边形是菱形④;其中正确的个数为()A.个 B.个 C.个 D.个3.抛物线y=2(x+3)2+5的顶点坐标是()A.(3,5) B.(﹣3,5) C.(3,﹣5) D.(﹣3,﹣5)4.如图,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则下列结论正确的是()A.sinA= B.tanA= C.cosB= D.tanB=5.如图,在直线上有相距的两点和(点在点的右侧),以为圆心作半径为的圆,过点作直线.将以的速度向右移动(点始终在直线上),则与直线在______秒时相切.A.3 B.3.5 C.3或4 D.3或3.56.如图,在大小为的正方形网格中,是相似三角形的是()A.甲和乙 B.乙和丙 C.甲和丙 D.乙和丁7.如图,矩形ABCD中,E是AB的中点,将△BCE沿CE翻折,点B落在点F处,tan∠BCE=.设AB=x,△ABF的面积为y,则y与x的函数图象大致为A. B.C. D.8.在奔驰、宝马、丰田、三菱等汽车标志图形中,为中心对称图形的是()A.B.C.D.9.为解决群众看病贵的问题,有关部门决定降低药价,原价为30元的药品经过连续两次降价,价格变为24.3元,则平均每次降价的百分率为()A.10% B.15% C.20% D.25%10.已知关于x的二次方程有两个实数根,则k的取值范围是()A. B.且 C. D.且二、填空题(每小题3分,共24分)11.一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多有________.12.钟表分针的运动可看作是一种旋转现象,一只标准时钟的分针匀速旋转,经过15分钟旋转了______度.13.从1,2,3,4,5,6,7,8,9这九个自然数中,任取一个数是奇数的概率是.14.若关于的一元二次方程有实数根,则的取值范围是_______.15.一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是.16.如图,BC⊥y轴,BC<OA,点A、点C分别在x轴、y轴的正半轴上,D是线段BC上一点,BD=OA=2,AB=3,∠OAB=45°,E、F分别是线段OA、AB上的两动点,且始终保持∠DEF=45°,将△AEF沿一条边翻折,翻折前后两个三角形组成的四边形为菱形,则线段OE的值为_____.17.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,过D点作AB的垂线交AC于点E,BC=6,sinA=,则DE=_____.18.如图,若内一点满足,则称点为的布罗卡尔点,三角形的布罗卡尔点是法国数学教育家克雷尔首次发现,后来被数学爱好者法国军官布罗卡尔重新发现,并用他的名字命名,布罗卡尔点的再次发现,引发了研究“三角形几何”的热潮.已知中,,,为的布罗卡尔点,若,则________.三、解答题(共66分)19.(10分)某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.已知某种士特产每袋成本10元.试销阶段每袋的销售价x(元)与该士特产的日销售量y(袋)之间的关系如表:x(元)152030…y(袋)252010…若日销售量y是销售价x的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?20.(6分)如图,在中,,.,平分交于点,过点作交于点,点是线段上的动点,连结并延长分别交,于点,.(1)求的长.(2)若点是线段的中点,求的值.21.(6分)如图1,矩形ABCD中,AD=2,AB=3,点E,F分别在边AB,BC上,且BF=FC,连接DE,EF,并以DE,EF为边作▱DEFG.(1)连接DF,求DF的长度;(2)求▱DEFG周长的最小值;(3)当▱DEFG为正方形时(如图2),连接BG,分别交EF,CD于点P、Q,求BP:QG的值.22.(8分)为弘扬中华民族传统文化,某市举办了中小学生“国学经典大赛”,比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式为“双人组”.小明和小红组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次.则恰好小明抽中“唐诗”且小红抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.23.(8分)如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D,过点D作AC的垂线交AC于点E,交AB的延长线于点F.(1)求证:DE与⊙O相切;(2)若CD=BF,AE=3,求DF的长.24.(8分)试证明:不论为何值,关于的方程总为一元二次方程.25.(10分)如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E(1)求证:DE是⊙O的切线.(2)求DE的长.26.(10分)如图,是的直径,直线与相切于点.过点作的垂线,垂足为,线段与相交于点.(1)求证:是的平分线;(2)若,求的长.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据反比例函数的性质可解.【详解】解:∵双曲线在每一个象限内,y随x的增大而减小,∴k-3>0∴k>3故选:C.【点睛】本题考查了反比例函数的性质,掌握反比例函数,当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.2、B【分析】①先根据正五方形ABCDE的性质求得∠ABC,由等边对等角可求得:∠BAC=∠ACB=36°,再利用角相等求BC=CF=CD,求得∠CDF=∠CFD,即可求得答案;②证明△ABF∽△ACB,得,代入可得BF的长;③先证明CF∥DE且,证明四边形CDEF是平行四边形,再由证得答案;④根据平行四边形的面积公式可得:,即可求得答案.【详解】①∵五方形ABCDE是正五边形,,
∴,
∴,
∴,
同理得:,
∵,,
∴,
∵,∴,∴,则,
∴,
∵,
∴,
∴,
∴;
所以①正确;②∵∠ABE=∠ACB=36°,∠BAF=∠CAB,
∴△ABF∽△ACB,
∴,∵,∴,∵,∴,∴,解得:(负值已舍);所以②正确;③∵,,
∴,
∴CF∥DE,
∵,
∴四边形CDEF是平行四边形,∵,∴四边形CDEF是菱形,所以③正确;④如图,过D作DM⊥EG于M,
同①的方法可得,,
∴,,∴,所以④错误;综上,①②③正确,共3个,故选:B【点睛】本题考查了相似三角形的判定和性质,勾股定理,圆内接正五边形的性质、平行四边形和菱形的判定和性质,有难度,熟练掌握圆内接正五边形的性质是解题的关键.3、B【解析】解:抛物线y=2(x+3)2+5的顶点坐标是(﹣3,5),故选B.4、D【分析】根据三角函数的定义求解.【详解】解:∵在Rt△ABC中,∠ACB=90°,BC=1,AB=1.∴AC=,∴sinA=,tanA=,cosB=,tanB=.故选:D.【点睛】本题考查了解直角三角形,解答此题关键是正确理解和运用锐角三角函数的定义.5、C【分析】根据与直线AB的相对位置分类讨论:当在直线AB左侧并与直线AB相切时,根据题意,先计算运动的路程,从而求出运动时间;当在直线AB右侧并与直线AB相切时,原理同上.【详解】解:当在直线AB左侧并与直线AB相切时,如图所示∵的半径为1cm,AO=7cm∴运动的路程=AO-=6cm∵以的速度向右移动∴此时的运动时间为:÷2=3s;当在直线AB右侧并与直线AB相切时,如图所示∵的半径为1cm,AO=7cm∴运动的路程=AO+=8cm∵以的速度向右移动∴此时的运动时间为:÷2=4s;综上所述:与直线在3或4秒时相切故选:C.【点睛】此题考查的是直线与圆的位置关系:相切和动圆问题,掌握相切的定义和行程问题公式:时间=路程÷速度是解决此题的关键.6、C【分析】分别求得四个三角形三边的长,再根据三角形三边分别成比例的两三角形相似来判定.【详解】∵甲中的三角形的三边分别是:,2,;乙中的三角形的三边分别是:,,;丙中的三角形的三边分别是:,,;丁中的三角形的三边分别是:,,;只有甲与丙中的三角形的三边成比例:,
∴甲与丙相似.
故选:C.【点睛】本题主要考查了相似三角形的判定方法、勾股定理等,熟记定理的内容是解题的关键.7、D【解析】设AB=x,根据折叠,可证明∠AFB=90°,由tan∠BCE=,分别表示EB、BC、CE,进而证明△AFB∽△EBC,根据相似三角形面积之比等于相似比平方,表示△ABF的面积.【详解】设AB=x,则AE=EB=x,由折叠,FE=EB=x,则∠AFB=90°,由tan∠BCE=,∴BC=x,EC=x,∵F、B关于EC对称,∴∠FBA=∠BCE,∴△AFB∽△EBC,∴,∴y=,故选D.【点睛】本题考查了三角函数,相似三角形,三角形面积计算,二次函数图像等知识,利用相似三角形的性质得出△ABF和△EBC的面积比是解题关键.8、B【解析】试题分析:根据中心对称图形的概念,A、C、D都不是中心对称图形,是中心对称图形的只有B.故选B.考点:中心对称图形9、A【分析】设平均每次降价的百分率为x,根据该药品的原价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】设平均每次降价的百分率为x,依题意,得:30(1﹣x)2=24.3,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).故选:A.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.10、B【分析】根据一元二次方程根的判别式让∆=b2−4ac≥1,且二次项的系数不为1保证此方程为一元二次方程.【详解】解:由题意得:且,解得:且,故选:B.【点睛】本题考查了一元二次方程根的判别式,方程有2个实数根应注意两种情况:∆≥1,二次项的系数不为1.二、填空题(每小题3分,共24分)11、6【解析】符合条件的最多情况为:即最多为2+2+2=612、90【解析】分针走一圈(360°)要1小时,则每分钟走360°÷60=6°,则15分钟旋转15×6°=90°.故答案为90.13、.【解析】试题分析:∵从1到9这九个自然数中一共有5个奇数,∴任取一个数是奇数的概率是:.故答案是.考点:概率公式.14、【分析】对于一元二次方程,当时有实数根,由此可得m的取值范围.【详解】解:由题意可得,解得.故答案为:.【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握一元二次方程根的判别式是解题的关键.15、.【详解】解:根据树状图,蚂蚁获取食物的概率是=.故答案为.考点:列表法与树状图法.16、6﹣或6或9﹣3【分析】可得到∠DOE=∠EAF,∠OED=∠AFE,即可判定△DOE∽△EAF,分情况进行讨论:①当EF=AF时,△AEF沿AE翻折,所得四边形为菱形,进而得到OE的长;②当AE=AF时,△AEF沿EF翻折,所得四边形为菱形,进而得到OE的长;③当AE=EF时,△AEF沿AF翻折,所得四边形为菱形,进而得到OE的长.【详解】解:连接OD,过点BH⊥x轴,①沿着EA翻折,如图1:∵∠OAB=45°,AB=3,∴AH=BH=ABsin45°=,∴CO=,∵BD=OA=2,∴BD=2,OA=8,∴BC=8﹣,∴CD=6﹣;∵四边形FENA是菱形,∴∠FAN=90°,∴四边形EFAN是正方形,∴△AEF是等腰直角三角形,∵∠DEF=45°,∴DE⊥OA,∴OE=CD=6﹣;②沿着AF翻折,如图2:∴AE=EF,∴B与F重合,∴∠BDE=45°,∵四边形ABDE是平行四边形∴AE=BD=2,∴OE=OA﹣AE=8﹣2=6;③沿着EF翻折,如图3:∴AE=AF,∵∠EAF=45°,∴△AEF是等腰三角形,过点F作FM⊥x轴,过点D作DN⊥x轴,∴△EFM∽△DNE,∴,∴,∴NE=3﹣,∴OE=6﹣+3﹣=9﹣3;综上所述:OE的长为6﹣或6或9﹣3,故答案为6﹣或6或9﹣3.【点睛】此题主要考查函数与几何综合,解题的关键是熟知等腰三角形的性质、平行四边形、菱形及正方形的性质,利用三角函数、勾股定理及相似三角形的性质进行求解.17、【详解】∵在Rt△ABC中,BC=6,sinA=∴AB=10∴.∵D是AB的中点,∴AD=AB=1.∵∠C=∠EDA=90°,∠A=∠A∴△ADE∽△ACB,∴即解得:DE=.18、【分析】作CH⊥AB于H.首先证明,再证明△PAB∽△PBC,可得,即可求出PA、PC.【详解】解:作CH⊥AB于H.
∵CA=CB,CH⊥AB,∠ACB=120°,
∴AH=BH,∠ACH=∠BCH=60°,∠CAB=∠CBA=30°,∴BC=2CH,
∴AB=2BH=2=,∵∠PAC=∠PCB=∠PBA,
∴∠PAB=∠PBC,
∴△PAB∽△PBC,,∵,∴PA=,PC=,∴PA+PC=,故答案为:.【点睛】本题考查等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是准确寻找相似三角形解决问题.三、解答题(共66分)19、(1)y=﹣x+40;(2)要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.【分析】(1)根据表格中的数据,利用待定系数法,求出日销售量y(袋)与销售价x(元)的函数关系式即可(2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.【详解】(1)依题意,根据表格的数据,设日销售量y(袋)与销售价x(元)的函数关系式为y=kx+b得,解得,故日销售量y(袋)与销售价x(元)的函数关系式为:y=﹣x+40;(2)依题意,设利润为w元,得w=(x﹣10)(﹣x+40)=﹣x2+50x+400,整理得w=﹣(x﹣25)2+225,∵﹣1<0,∴当x=2时,w取得最大值,最大值为225,故要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.【点睛】本题考查了一次函数的应用,二次函数的应用,正确分析得出各量间的关系并熟练掌握二次函数的性质是解题的关键.20、(1);(2).【解析】(1)求出,在Rt△ADC中,由三角函数得出;(2)由三角函数得出BC=AC•tan60°=,得出,证明△DFM≌△AGM(ASA),得出DF=AG,由平行线分线段成比例定理得出,即可得出答案.【详解】解:(1)∵平分,,∴,在中,,(2)∵∠C=90°,AC=6,∠BAC=60°,∴,∴,∵DE∥AC,∠DMF和∠AMG是对顶角,∴∠FDM=∠GAM,∠DMF=∠AMG,∵点M是线段AD的中点,∴,∵,∴,∴.由DE∥AC,得,∴,∴;【点睛】本题主要考查了全等三角形的性质与判定,特殊角的三角函数值,掌握全等三角形的性质与判定,特殊角的三角函数值是解题的关键.21、(1);(2)6;(3)或.【分析】(1)平行四边形DEFG对角线DF的长就是Rt△DCF的斜边的长,由勾股定理求解;(2)平行四边形DEFG周长的最小值就是求邻边2(DE+EF)最小值,DE+EF的最小值就是以AB为对称轴,作点F的对称点M,连接DM交AB于点N,点E与N点重合时即DE+EF=DM时有最小值,在Rt△DMC中由勾股定理求DM的长;(3)平行四边形DEFG为矩形时有两种情况,一是一般矩形,二是正方形,分类用全等三角形判定与性质,等腰直角三角形判定与性质,三角形相似的判定与性质和勾股定理求解.【详解】解:(1)如图1所示:∵四边形ABCD是矩形,∠C=90°,AD=BC,AB=DC,∵BF=FC,AD=2;∴FC=1,∵AB=3;∴DC=3,在Rt△DCF中,由勾股定理得,∴DF===;(2)如图2所示:作点F关直线AB的对称点M,连接DM交AB于点N,连接NF,ME,点E在AB上是一个动点,①当点E不与点N重合时点M、E、D可构成一个三角形,∴ME+DE>MD,②当点E与点N重合时点M、E(N)、D在同一条直线上,∴ME+DE=MD由①和②DE+EF的值最小时就是点E与点N重合时,∵MB=BF,∴MB=1,∴MC=3,又∵DC=3,∴△MCD是等腰直角三角形,∴MD===3,∴NF+DN=MD=3,∴l平行四边形DEFG=2(NF+DF)=6;(3)设AE=x,则BE=3﹣x,∵平行四边形DEFG为矩形,∴∠DEF=90°,∵∠AED+∠BEF=90°,∠BEF+∠BFE=90°,∴∠AED=∠BFE,又∵∠A=∠EBF=90°,∴△DAE∽△EBF,∴=,∴=,解得:x=1,或x=2①当AE=1,BE=2时,过点B作BH⊥EF,如图3(甲)所示:∵平行四边形DEFG为矩形,∴∠A=∠ABF=90°,又∵BF=1,AD=2,∴在△ADE和△BEF中,,∴△ADE≌△BEF中(SAS),∴DE=EF,∴矩形DEFG是正方形;在Rt△EBF中,由勾股定理得:EF===,∴BH==,又∵△BEF~△HBF,∴=,HF===,在△BPH和△GPF中有:∠BPH=∠GPF,∠BHP=∠GFP,∴△BPH∽△GPF,∴===,∴PF=•HF=,又∵EP+PF=EF,∴EP=﹣=,又∵AB∥BC,EF∥DG,∴∠EBP=∠DQG,∠EPB=∠DGQ,∴△EBP∽△DQG(AA),∴===,②当AE=2,BE=1时,过点G作GH⊥DC,如图3(乙)所示:∵▱DEFG为矩形,∴∠A=∠EBF=90°,∵AD=AE=2,BE=BF=1,∴在Rt△ADE和Rt△EFB中,由勾股定理得:∴ED==2,EF===,∴∠ADE=45°,又∵四边形DEFG是矩形,∴EF=DG,∠EDG=90°,∴DG=,∠HDG=45°,∴△DHG是等腰直角三角形,∴DH=HG=1,在△HGQ和△BCQ中有,∠GHQ=∠BCQ,∠HQG=∠CQB,∴△HGQ∽△BCQ,∴==,∵HC=HQ+CQ=2,∴HQ=,又∵DQ=DH+HQ,∴DQ=1+=,∵AB∥DC,EF∥DG,∴∠EBP=∠DQG,∠EPB=∠DGQ,∴△EBP∽△DQG(AA),∴=,综合所述,BP:QG的值为或.【点睛】本题考查了矩形的性质,轴对称的性质,全等三角形的判定与性质,相似三角形的判定与性质,等腰三角形的判定与性质;重点掌握相似三角形的判定与性质,难点是作辅助线和分类求值.22、【分析】画出树状图,然后根据概率公式列式计算,即可得到答案.【详解】解:画树状图为:共有12种等可能的结果数;其中恰好小明抽中“唐诗”且小红抽中“宋词”的结果数为1,∴恰好小明抽中“唐诗”且小红抽中“宋词”的概率=;【点睛】本题考查了列表法和树状图法,以及概率的公式,解题的关键是熟练掌握列表法和树状图法求概率.23、(1)见解析;(2)DF=2.【分析】(1)连接OD,求出AC∥OD,求出OD⊥DE,根据切线的判定得出即可;
(2)求出∠1=∠2=∠F=30°,求出AD=DF,解直角三角形求出AD,即可求出答案.【详解】(1)证明:连接OD,∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,又∵AB=AC,∴∠1=∠2,∵OA=OD,∴∠2=∠ADO,∴∠1=∠ADO,∴OD∥AC,∵DE⊥AC,∴∠ODF=∠AED=90°,∴OD⊥ED,∵OD过O,∴DE与⊙O相切;(2)解:∵AB=AC,AD⊥BC,∴∠1=∠2,CD=BD,∵CD=BF,∴BF=BD,∴∠3=∠F,∴∠4=∠3+∠F=2∠3,∵OB=OD,∴∠ODB=∠4=2∠3,∵∠ODF=90°,∴∠3=∠F=30°,∠4=∠ODB=60°,∵∠ADB=90°,∴∠2=∠1=30°,∴∠2=∠F,∴DF=AD,∵∠1=30°,∠AED=90°,∴AD=2ED,∵AE2+DE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 精简合同条款提高合作效率
- 提前解除租赁合同的协议
- 工业材料采购合同样本
- 2024年商贸中心门面租赁合同标准版本(二篇)
- 2024年商场促销活动总结参考样本(二篇)
- 2024年实习工作总结参考范文(五篇)
- 2024年工会管理制度(五篇)
- 2024年幼儿园健康教育工作计划范文(四篇)
- 2024年委托创作合同(四篇)
- 2024年危险废物交接班管理制度范本(三篇)
- 初中青春期健康教育课件
- 小品《母恩重如山》台词剧本手稿
- 头位难产课件
- 三年级上册英语课件-Unit3 Look at me-人教(PEP) (4)(共14张PPT)
- 蜜蜂养殖技术课件
- 特种门安装分项工程(防火卷帘门)检验批质量验收记录表
- 《世界的人口》教学设计和反思
- 隧道工程QC小组成果
- 《机械原理》考试复习题库(含答案)
- 肿瘤MDT课件讲义整理
- 鲁科版五四制七年级上册生物期中测试卷
评论
0/150
提交评论