2022年江苏省宿迁市名校九年级数学第一学期期末综合测试模拟试题含解析_第1页
2022年江苏省宿迁市名校九年级数学第一学期期末综合测试模拟试题含解析_第2页
2022年江苏省宿迁市名校九年级数学第一学期期末综合测试模拟试题含解析_第3页
2022年江苏省宿迁市名校九年级数学第一学期期末综合测试模拟试题含解析_第4页
2022年江苏省宿迁市名校九年级数学第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.在1、2、3三个数中任取两个,组成一个两位数,则组成的两位数是奇数的概率为()A. B. C. D.2.如图在中,弦于点于点,若则的半径的长为()A. B. C. D.3.下列事件中,是必然事件的是()A.随意翻倒一本书的某页,这页的页码是奇数. B.通常温度降到以下,纯净的水结冰.C.从地面发射一枚导弹,未击中空中目标. D.购买1张彩票,中奖.4.下列事件为必然事件的是()A.袋中有4个蓝球,2个绿球,共6个球,随机摸出一个球是红球B.三角形的内角和为180°C.打开电视机,任选一个频道,屏幕上正在播放广告D.抛掷一枚硬币两次,第一次正面向上,第二次反面向上5.如图,抛物线y=ax2+bx+c的对称轴为x=﹣1,且过点(,0),有下列结论:①abc>0;②a﹣2b+4c>0;③25a﹣10b+4c=0;④3b+2c>0;其中所有正确的结论是()A.①③ B.①③④ C.①②③ D.①②③④6.下列事件是必然事件的是()A.通常加热到100℃,水沸腾B.抛一枚硬币,正面朝上C.明天会下雨D.经过城市中某一有交通信号灯的路口,恰好遇到红灯7.已知关于的一元二次方程有一个根为,则另一个根为()A. B. C. D.8.将二次函数化为的形式,结果为()A. B.C. D.9.如图所示,抛物线y=ax2-x+c(a>0)的对称轴是直线x=1,且图像经过点(3,0),则a+c的值为(

)A.0 B.-1 C.1 D.210.如图,在△ABC中,点D,E,F分别是边AB,AC,BC上的点,DE∥BC,EF∥AB,且AD∶DB=3∶5,那么CF∶CB等于()A.5∶8 B.3∶8 C.3∶5 D.2∶511.如图,已知四边形是平行四边形,下列结论不正确的是()A.当时,它是矩形 B.当时,它是菱形C.当时,它是菱形 D.当时,它是正方形12.若将二次函数的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得图象对应函数的表达式为()A. B.C. D.二、填空题(每题4分,共24分)13.分解因式:=__________14.正六边形的边长为6,则该正六边形的面积是______________.15.利用标杆CD测量建筑物的高度的示意图如图所示,使标杆顶端的影子与建筑物顶端的影子恰好落在地面的同一点E.若标杆CD的高为1.5米,测得DE=2米,BD=16米,则建筑物的高AB为_____米.16.将抛物线向左平移2个单位得到新的抛物线,则新抛物线的解析式是______.17.已知两圆内切,半径分别为2厘米和5厘米,那么这两圆的圆心距等于_____厘米.18.设m,n分别为一元二次方程x2+2x-2020=0的两个实数根,则m2+3m+n=______.三、解答题(共78分)19.(8分)如图,在△ABC中,AB=4cm,AC=6cm.(1)作图:作BC边的垂直平分线分别交与AC,BC于点D,E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结BD,求△ABD的周长.20.(8分)某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB的影长AC为12米,并测出此时太阳光线与地面成30°夹角.(1)求出树高AB;(2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变.求树的最大影长.(用图(2)解答)21.(8分)小红想利用阳光下的影长测量学校旗杆AB的高度.如图,他在某一时刻在地面上竖直立一个2米长的标杆CD,测得其影长DE=0.4米.(1)请在图中画出此时旗杆AB在阳光下的投影BF.(2)如果BF=1.6,求旗杆AB的高.22.(10分)“一带一路”为我们打开了交流、合作的大门,也为沿线各国在商贸等领域提供了更多的便捷,2018年11月5日至10日,首届中国国际进口博览会在国家会展中心(上海)举办,据哈外贸商会发布消息,博览会期间,哈Paseka公司与重庆某国际贸易公司签订了供应蜂蜜合同:哈Paseka公司于2019年6月前分期分批向重庆某国际贸易公司供给优质蜂蜜共3000万件,该公司顺应新时代购物流,打算分线上和线下两种方式销售.(1)若计划线上销售量不低于线下销售量的25%,求该公司计划在线下销售量最多为多少万件?(2)该公司在12月上旬销售优质蜂蜜共240万件,且线上线下销售单件均为100元/件.12月中旬决定线上销售单价下调m%,线下销售单价不变,在这种情况下,12月中旬销售总量比上旬增加了m%,且中旬线上销售量占中旬总销量的,结果中旬销售总金额比上旬销售总金额提高了m%.求m的值.23.(10分)如图,等腰中,,点是边上一点,在上取点,使(1)求证:;(2)若,求的长.24.(10分)如图,在平面直角坐标系中,点B的坐标是(2,2),将线段OB绕点O顺时针旋转120°,点B的对应点是点B1.(1)①求点B绕点O旋转到点B1所经过的路程长;②在图中画出1,并直接写出点B1的坐标是;(2)有7个球除了编号不同外,其他均相同,李南和王易设计了如下的一个规则:装入不透明的甲袋,装入不透明的乙袋,李南从甲袋中,王易从乙袋中,各自随机地摸出一个球(不放回),把李南摸出的球的编号作为横坐标x,把王易摸出的球的编号作为纵坐标y,用列表法或画树状图法表示出(x,y)的所有可能出现的结果;(3)李南和王易各取一次小球所确定的点(x,y)落在1上的概率是.25.(12分)如图,AB是⊙O的直径,BC交⊙O于点D,E是的中点,连接AE交BC于点F,∠ACB=2∠EAB.(1)求证:AC是⊙O的切线;(2)若,,求BF的长.26.如图,是⊙的直径,,是的中点,连接并延长到点,使.连接交⊙于点,连接.(1)求证:直线是⊙的切线;(2)若,求⊙的半径.

参考答案一、选择题(每题4分,共48分)1、C【分析】列举出所有情况,看末位是1和3的情况占所有情况的多少即可.【详解】依题意画树状图:∴共有6种情况,是奇数的有4种情况,所以组成的两位数是偶数的概率=,故选:C.【点睛】本题考查了树状图法求概率以及概率公式;如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,注意本题是不放回实验.2、C【分析】根据垂径定理求得OD,AD的长,并且在直角△AOD中运用勾股定理即可求解.【详解】解:弦,于点,于点,四边形是矩形,,,,;故选:.【点睛】本题考查了垂径定理、勾股定理、矩形的判定与性质;利用垂径定理求出AD,AE的长是解决问题的关键.3、B【分析】根据必然事件的定义判断即可.【详解】A、C、D为随机事件,B为必然事件.故选B.【点睛】本题考查随机事件与必然事件的判断,关键在于熟记概念.4、B【解析】确定事件包括必然事件和不可能事件,必然事件指在一定条件下,一定发生的事件,不可能事件是指在一定条件下,一定不发生的事件;【详解】A.袋中有4个蓝球,2个绿球,共6个球,随机摸出一个球是红球是不可能事件;B.三角形的内角和为180°是必然事件;C.打开电视机,任选一个频道,屏幕上正在播放广告是随机事件;D.抛掷一枚硬币两次,第一次正面向上,第二次反面向上是随机事件;故选:B.【点睛】此题考查随机事件,解题关键在于掌握其定义5、C【分析】①根据抛物线的开口方向、对称轴、与y轴的交点即可得结论;②根据抛物线与x轴的交点坐标即可得结论;③根据对称轴和与x轴的交点得另一个交点坐标,把另一个交点坐标代入抛物线解析式即可得结论;④根据点(,1)和对称轴方程即可得结论.【详解】解:①观察图象可知:a<1,b<1,c>1,∴abc>1,所以①正确;②当x=时,y=1,即a+b+c=1,∴a+2b+4c=1,∴a+4c=﹣2b,∴a﹣2b+4c=﹣4b>1,所以②正确;③因为对称轴x=﹣1,抛物线与x轴的交点(,1),所以与x轴的另一个交点为(﹣,1),当x=﹣时,a﹣b+c=1,∴25a﹣11b+4c=1.所以③正确;④当x=时,a+2b+4c=1,又对称轴:﹣=﹣1,∴b=2a,a=b,b+2b+4c=1,∴b=﹣c.∴3b+2c=﹣c+2c=﹣c<1,∴3b+2c<1.所以④错误.故选:C.【点睛】本题考查了利用抛物线判断式子正负,正确读懂抛物线的信息,判断式子正负是解题的关键6、A【解析】解:A.通常加热到100℃,水沸腾,是必然事件,故A选项符合题意;B.抛一枚硬币,正面朝上,是随机事件,故B选项不符合题意;C.明天会下雨,是随机事件,故C选项不符合题意;D.经过城市中某一有交通信号灯的路口,恰好遇到红灯,是随机事件,故D选项不符合题意.故选A.【点睛】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7、B【分析】根据一元二次方程的根与系数的关系,x₁+x₂=,把x₁=1代入即可求出.【详解】解:方程有一个根是,另-一个根为,由根与系数关系,即即方程另一根是故选:.【点睛】本题考查了一元二次方程根与系数的关系的应用,还可根据一元二次方程根的定义先求出k的值,再解方程求另一根.8、D【分析】化,再根据完全平方公式分解因式即可.【详解】∵∴故选D.【点睛】解答本题的关键是熟练掌握完全平方公式:,注意当二次项系数为1时,常数项等于一次项系数一半的平方.9、B【解析】∵抛物线的对称轴是直线,且图像经过点(3,0),∴,解得:,∴.故选B.10、A【解析】∵DE∥BC,EF∥AB,∴,,∴,∴,∴,即.故选A.点睛:若,则,.11、D【解析】根据已知及各个四边形的判定对各个选项进行分析从而得到最后答案.【详解】A.正确,对角线相等的平行四边形是矩形;B.正确,对角线垂直的平行四边形是菱形;C.正确,有一组邻边相等的平行四边形叫做菱形;D.不正确,有一个角是直角的平行四边形叫做矩形。故选D【点睛】此题考查平行四边形的性质,矩形的判定,正方形的判定,解题关键在于掌握判定法则12、C【分析】根据抛物线的平移规律:上加下减,左加右减解答即可.【详解】解:将的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得二次函数的表达式为:.故选:C.【点睛】本题考查了抛物线的平移,属于基本知识题型,熟练掌握抛物线的平移规律是解题的关键.二、填空题(每题4分,共24分)13、【解析】分解因式的方法为提公因式法和公式法及分组分解法.原式==a(3+a)(3-a).14、【分析】根据题意可知边长为6的正六边形可以分成六个边长为6的正三角形,从而计算出正六边形的面积即可.【详解】解:连接正六变形的中心O和两个顶点D、E,得到△ODE,因为∠DOE=360°×=60°,又因为OD=OE,所以∠ODE=∠OED=(180°-60°)÷2=60°,则三角形ODE为正三角形,∴OD=OE=DE=6,∴S△ODE=OD•OE•sin60°=×6×6×=9.正六边形的面积为6×9=54.故答案为.【点睛】本题考查学生对正多边形的概念掌握和计算的能力,即要熟悉正六边形的性质,也要熟悉正三角形的面积公式.15、13.5【分析】根据同一时刻同一地点物高与影长成正比列式求得CD的长即可.【详解】解:∵AB∥CD,∴△EBA∽△ECD,∴,即,∴AB=13.5(米).故答案为:13.5【点睛】此题主要考查相似三角形的性质,解题的关键是熟知相似三角形的判定与性质.16、y=5(x+2)2【分析】根据二次函数平移的性质求解即可.【详解】抛物线的平移问题,实质上是顶点的平移,原抛物线y=顶点坐标为(O,O),向左平移2个单位,顶点坐标为(-2,0),根据抛物线的顶点式可求平移后抛物线的解析式为y=5(x+2)2,故答案为y=5(x+2)2.【点睛】本题主要考查二次函数平移的性质,有口诀“左加右减,上加下减”,注意灵活运用.17、1【解析】由两圆的半径分别为2和5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系和两圆位置关系求得圆心距即可.【详解】解:∵两圆的半径分别为2和5,两圆内切,∴d=R﹣r=5﹣2=1cm,故答案为1.【点睛】此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.18、2018.【解析】根据题意得.m2+3m+n=2020+m+n,再根据m,n分别为一元二次方程x2+2x-2020=0的两个实数根,得m+n=-2,带入m2+3m+n计算即可.【详解】解:∵m为一元二次方程x2+2x-2020=0的实数根,∴m2+2m-2020=0,即m2=-2m+2020,∴m2+3m+n=-2m+2020+3m+n=2020+m+n,∵m,n分别为一元二次方程x2+2x-2020=0的两个实数根,∴m+n=-2,∴m2+3m+n=2020-2=2018.【点睛】本题考查了一元二次方程的应用,解题的关键是熟练的掌握一元二次方程的应用.三、解答题(共78分)19、(1)详见解析;(2)10cm.【分析】(1)运用作垂直平分线的方法作图,(2)运用垂直平分线的性质得出BD=DC,利用△ABD的周长=AB+BD+AD=AB+AC即可求解.【详解】解:(1)如图1,(2)如图2,∵DE是BC边的垂直平分线,∴BD=DC,∵AB=4cm,AC=6cm.∴△ABD的周长=AB+BD+AD=AB+AC=4+6=10cm.【点睛】本题考查的是尺规作图以及线段垂直平分线的性质:线段垂直平分线上的点到线段两端的距离相等,20、(1)树AB的高约为4m;(2)8m.【解析】(1)AB=ACtan30°=12×=(米).答:树高约为米.(2)如图(2),B1N=AN=AB1sin45°=×=(米).NC1=NB1tan60°=×=(米).AC1=AN+NC1=+.当树与地面成60°角时影长最大AC2(或树与光线垂直时影长最大或光线与半径为AB的⊙A相切时影长最大)AC2=2AB2=;(1)在直角△ABC中,已知∠ACB=30°,AC=12米.利用三角函数即可求得AB的长;(2)在△AB1C1中,已知AB1的长,即AB的长,∠B1AC1=45°,∠B1C1A=30°.过B1作AC1的垂线,在直角△AB1N中根据三角函数求得AN,BN;再在直角△B1NC1中,根据三角函数求得NC1的长,再根据当树与地面成60°角时影长最大,根据三角函数即可求解.21、(1)见解析(2)8m【详解】试题分析:(1)利用太阳光线为平行光线作图:连结CE,过A点作AF∥CE交BD于F,则BF为所求;(2)证明△ABF∽△CDE,然后利用相似比计算AB的长.试题解析:(1)连结CE,过A点作AF∥CE交BD于F,则BF为所求,如图;(2)∵AF∥CE,∴∠AFB=∠CED,而∠ABF=∠CDE=90°,∴△ABF∽△CDE,∴,即,∴AB=8(m),答:旗杆AB的高为8m.22、(1)2400万件;(2)1【分析】(1)设该公司计划在线下销售量为x万件,由题意得关于x的一元一次不等式,求解即可;(2)以中旬销售总金额比上旬销售总金额提高了m%为等量关系,得关于m的一元二次方程,求解,并根据问题的实际意义作出取舍即可.【详解】(1)设该公司计划在线下销售量为x万件,则3000﹣x≥1%x解得:x≤2400答:该公司计划在线下销售量最多为2400万件;(2)由题意得:×240(1+m%)×100(1﹣m%)+(1﹣)×240(1+m%)×100=240×100(1+m%)化简得:m2﹣1m=0解得:m1=0(不合题意,舍去),m2=1∴m的值为1.【点睛】本题主要考查一元一次不等式和一元二次方程的实际应用,找到题目中的等量关系和不等量关系,是解题的关键.23、(1)见解析;(2).【分析】(1)利用三角形外角定理证得∠EDC=∠DAB,再根据两角相等即可证明△ABD∽△DCE;(2)作高AF,利用三角函数求得,继而求得,再根据△ABD∽△DCE,利用对应边成比例即可求得答案.【详解】(1)∵△ABC是等腰三角形,且∠BAC=120°,

∴∠ABD=∠ACB=30°,

∴∠ABD=∠ADE=30°,

∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,

∴∠EDC=∠DAB,

∴△ABD∽△DCE;(2)过作于,∵△ABC是等腰三角形,且∠BAC=120°,,∴∠ABD=∠ACB=30°,,则,,,,,,所以.【点睛】本题是相似形的综合题,考查了三角形相似的性质和判定、等腰三角形的性质、解直角三角形,证得△ABD∽△DCE是解题的关键.24、(1)①;②见解析,B1的坐标是(0,﹣4);(2)见详解;(3)【分析】(1)①根据勾股定理算出OB的长,再根据弧长公式算出线段OB绕着O点旋转到B1所经过的路径长;②由①得∠BOH=30°,结合图象得到旋转后的B1的坐标;(2)利用树状图得到所有可能的结果;(3)计算各点到原点的距离,可判断点落在1上的结果,即可求出概率.【详解】解:(1)①作BH⊥x轴于点H,∵点B的坐标是(2,2),∴BH=2,OH=2,∴OB==4,∴B绕点O旋转到点B1所经过的路程长==;②如图,1为所作,过B作BH⊥x轴,∵tan∠BOH=,∴∠BOH=30°,又∵∠BOB1=120°,∴∠HOB1=90°,∴点B1在y轴负半轴上由旋转性质可知OB=OB1==4,所以点B1的坐标是(0,﹣4);(2)画树状图为:共有12种等可能的结果:分别为(4,0)(4,-1)(4,-2)(4,-6)()()()()(,0)(,-1)(,-2)(,-6);(3)(4,0)到原点的距离为:4,(4,-1)到原点的距离为:=,(4,-2)到原点的距离为:=,(4,-6)到原点的距离为=,()到原点的距离是,()到原点的距离是=,()到原点的距离为:=4,()到原点的距离是=4,(,0)到原点的距离为,(,-1)到原点的距离为=,(,-2)到原点的距离是=,(,-6)到原点的距离为=,点(x,y)落在1上的结果数为2,所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论