2025届咸阳市重点中学数学九上期末统考模拟试题含解析_第1页
2025届咸阳市重点中学数学九上期末统考模拟试题含解析_第2页
2025届咸阳市重点中学数学九上期末统考模拟试题含解析_第3页
2025届咸阳市重点中学数学九上期末统考模拟试题含解析_第4页
2025届咸阳市重点中学数学九上期末统考模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届咸阳市重点中学数学九上期末统考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.已知点C为线段AB延长线上的一点,以A为圆心,AC长为半径作⊙A,则点B与⊙A的位置关系为()A.点B在⊙A上 B.点B在⊙A外 C.点B在⊙A内 D.不能确定2.下列大学校徽内部图案中可以看成由某一个基本图形通过平移形成的是()A. B. C. D.3.如图,函数的图象与轴的一个交点坐标为(3,0),则另一交点的横坐标为()A.﹣4 B.﹣3 C.﹣2 D.﹣14.若,则的值等于()A. B. C. D.5.对于问题:如图1,已知∠AOB,只用直尺和圆规判断∠AOB是否为直角?小意同学的方法如图2:在OA、OB上分别取C、D,以点C为圆心,CD长为半径画弧,交OB的反向延长线于点E,若测量得OE=OD,则∠AOB=90º.则小意同学判断的依据是()A.等角对等边 B.线段中垂线上的点到线段两段距离相等C.垂线段最短 D.等腰三角形“三线合一”6.如图是某零件的模型,则它的左视图为()A. B. C. D.7.已知二次函数y=ax2+bx+c的图象如图所示,下列结i论:①abc>1;②b2﹣4ac>1;③2a+b=1;④a﹣b+c<1.其中正确的结论有()A.1个 B.2个 C.3个 D.4个8.⊙O的半径为3,点P到圆心O的距离为5,点P与⊙O的位置关系是()A.无法确定 B.点P在⊙O外 C.点P在⊙O上 D.点P在⊙O内9.如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是()A.4 B.6.25 C.7.5 D.910.对于反比例函数,下列说法正确的是()A.的值随值的增大而增大 B.的值随值的增大而减小C.当时,的值随值的增大而增大 D.当时,的值随值的增大而减小11.下列事件中,是必然事件的是()A.掷一次骰子,向上一面的点数是6B.13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月C.射击运动员射击一次,命中靶心D.经过有交通信号灯的路口,遇到红灯12.如图,在Rt△ABC中,CD是斜边AB上的中线,若CD=5,AC=6,则tanB的值是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,AB是⊙C的直径,点C、D在⊙C上,若∠ACD=33°,则∠BOD=_____.14.在平面直角坐标系中,将抛物线向左平移2个单位后顶点坐标为_______.15.如图,是的直径,点、在上,连结、、、,若,,则的度数为________.16.在-1、0、、1、、中任取一个数,取到无理数的概率是____________17.一次函数与反比例函数()的图象如图所示,当时,自变量的取值范围是__________.18.若实数a、b满足a+b2=2,则a2+5b2的最小值为_____.三、解答题(共78分)19.(8分)已知如图,抛物线y=ax2+bx+3与x轴交于点A(3,0),B(﹣1,0),与y轴交于点C,连接AC,点P是直线AC上方的抛物线上一动点(异于点A,C),过点P作PE⊥x轴,垂足为E,PE与AC相交于点D,连接AP.(1)求点C的坐标;(2)求抛物线的解析式;(3)①求直线AC的解析式;②是否存在点P,使得△PAD的面积等于△DAE的面积,若存在,求出点P的坐标,若不存在,请说明理由.20.(8分)如图,C是直径AB延长线上的一点,CD为⊙O的切线,若∠C=20°,求∠A的度数.21.(8分)某小区新建成的住宅楼主体工程已经竣工,只剩下楼体外表需贴瓷砖,已知楼体外表的面积为.(1)写出每块瓷砖的面积与所需的瓷砖块数(块)之间的函数关系式;(2)为了使住宅楼的外观更漂亮,开发商决定采用灰、白、蓝三种颜色的瓷砖,每块瓷砖的面积都是,灰、白、蓝瓷砖使用比例是,则需要三种瓷砖各多少块?22.(10分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.23.(10分)为了解学生的艺术特长发展情况,某校决定围绕“在舞蹈、乐器、声乐、戏曲、其它活动项目中,你最喜欢哪一项活动(每人只限一项)”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)扇形统计图中“戏曲”部分对应的扇形的圆心角为度;(2)若在“舞蹈、乐器、声乐、戏曲”项目中任选两项成立课外兴趣小组,请用列举法求恰好选中“舞蹈、声乐”这两项的概率.24.(10分)已知,正方形中,点是边延长线上一点,连接,过点作,垂足为点,与交于点.

(1)如图甲,求证:;(2)如图乙,连接,若,,求的值.25.(12分)已知△ABC在平面直角坐标系中的位置如图所示.(1)分别写出图中点A和点C的坐标;(2)画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;(3)求点A旋转到点A′所经过的路线长(结果保留π).26.如图,已知AB为⊙O的直径,AD,BD是⊙O的弦,BC是⊙O的切线,切点为B,OC∥AD,BA,CD的延长线相交于点E.(1)求证:DC是⊙O的切线;(2)若AE=1,ED=3,求⊙O的半径.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据题意确定AC>AB,从而确定点与圆的位置关系即可.【详解】解:∵点C为线段AB延长线上的一点,∴AC>AB,∴以A为圆心,AC长为半径作⊙A,则点B与⊙A的位置关系为点B在⊙A内,故选:C.【点睛】本题考查的知识点是点与圆的位置关系,根据题意确定出AC>AB是解此题的关键.2、C【分析】由平移的性质,分别进行判断,即可得到答案.【详解】解:由平移的性质可知,C选项的图案是通过平移得到的;A、B、D中的图案不是平移得到的;故选:C.【点睛】本题考查了平移的性质,解题的关键是掌握图案的平移进行解题.3、D【分析】根据到函数对称轴距离相等的两个点所表示的函数值相等可求解.【详解】根据题意可得:函数的对称轴直线x=1,则函数图像与x轴的另一个交点坐标为(-1,0).故横坐标为-1,故选D考点:二次函数的性质4、B【分析】将整理成,即可求解.【详解】解:∵,∴,

故选:B.【点睛】本题考查分式的化简求值,掌握分式的运算法则是解题的关键.5、B【分析】由垂直平分线的判定定理,即可得到答案.【详解】解:根据题意,∵CD=CE,OE=OD,∴AO是线段DE的垂直平分线,∴∠AOB=90°;则小意同学判断的依据是:线段中垂线上的点到线段两段距离相等;故选:B.【点睛】本题考查了垂直平分线的判定定理,解题的关键是熟练掌握垂直平分线的判定定理进行判断.6、D【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【详解】从左面看去,是两个有公共边的矩形,如图所示:故选:D.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.7、C【分析】首先根据开口方向确定a的取值范围,根据对称轴的位置确定b的取值范围,根据抛物线与y轴的交点确定c的取值范围,根据抛物线与x轴是否有交点确定b2﹣4ac的取值范围,根据x=﹣1函数值可以判断.【详解】解:抛物线开口向下,,对称轴,,抛物线与轴的交点在轴的上方,,,故①错误;抛物线与轴有两个交点,,故②正确;对称轴,,,故③正确;根据图象可知,当时,,故④正确;故选:.【点睛】此题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求与的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用是解题关键.8、B【分析】根据点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).【详解】解:∵OP=5>3,

∴点P与⊙O的位置关系是点在圆外.

故选:B.【点睛】本题主要考查了点与圆的位置关系,理解并掌握点和圆的位置关系与数量之间的等价关系是解题的关键.9、A【分析】先利用勾股定理判断△ABC为直角三角形,且∠BAC=90°,继而证明四边形AEOF为正方形,设⊙O的半径为r,利用面积法求出r的值即可求得答案.【详解】∵AB=5,BC=13,CA=12,∴AB2+AC2=BC2,∴△ABC为直角三角形,且∠BAC=90°,∵⊙O为△ABC内切圆,∴∠AFO=∠AEO=90°,且AE=AF,∴四边形AEOF为正方形,设⊙O的半径为r,∴OE=OF=r,∴S四边形AEOF=r²,连接AO,BO,CO,∴S△ABC=S△AOB+S△AOC+S△BOC,∴,∴r=2,∴S四边形AEOF=r²=4,故选A.【点睛】本题考查了三角形的内切圆,勾股定理的逆定理,正方形判定与性质,面积法等,正确把握相关知识是解题的关键.10、C【分析】根据反比例函数的增减性逐一分析即可.【详解】解:在反比例函数中,﹣4<0∴反比例函数的图象在二、四象限,且在每一象限内y随x的增大而增大∴A选项缺少条件:在每一象限内,故A错误;B选项说法错误;C选项当时,反比例函数图象在第四象限,y随x的增大而增大,故C选项正确;D选项当时,反比例函数图象在第二象限,y随x的增大而增大,故D选项错误.故选C.【点睛】此题考查的是反比例函数的增减性,掌握反比例函数的图象及性质与比例系数的关系是解决此题的关键.11、B【分析】事先能肯定它一定会发生的事件称为必然事件,即发生的概率是1的事件.【详解】解:A.掷一次骰子,向上一面的点数是6,属于随机事件;B.13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月,属于必然事件;C.射击运动员射击一次,命中靶心,属于随机事件;D.经过有交通信号灯的路口,遇到红灯,属于随机事件;故选B.【点睛】此题主要考查事件发生的概率,解题的关键是熟知必然事件的定义.12、C【解析】根据直角三角形斜边上的中线等于斜边的一半求出AB的长度,再利用勾股定理求出BC的长度,然后根据锐角的正切等于对边比邻边解答.【详解】∵CD是斜边AB上的中线,CD=5,

∴AB=2CD=10,

根据勾股定理,BC=tanB=.

故选C.【点睛】本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的应用,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边应熟练掌握.二、填空题(每题4分,共24分)13、114°.【分析】利用圆周角定理求出∠AOD即可解决问题.【详解】∵∠AOD=2∠ACD,∠ACD=33°,∴∠AOD=66°,∴∠BOD=180°﹣66°=114°,故答案为114°.【点睛】本题考查圆周角定理,解题的关键是掌握圆周角定理.14、【分析】根据变换前后的两抛物线的顶点坐标找变换规律.【详解】解:y=(x+5)(x-3)=(x+1)2-16,顶点坐标是(-1,-16).所以,抛物线y=(x+5)(x-3)向左平移2个单位长度后的顶点坐标为(-1-2,-16),即(-3,-16),故答案为:(-3,-16)【点睛】此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.15、°【分析】先由直径所对的圆周角为90°,可得:∠ADB=90°,根据同圆或等圆中,弦相等得到弧相等得到圆周角相等,得到∠A的度数,根据直角三角形的性质得到∠ABD的度数,即可得出结论.【详解】∵AB是⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.∵BD=CD,∴弧BD=弧CD,∴∠A=∠DBC=20°,∴∠ABD=90°-20°=70°,∴∠ABC=∠ABD-∠DBC=70°-20°=50°.故答案为:50°.【点睛】本题考查了圆周角定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,直径所对的圆周角为90°.16、【详解】解:根据无理数的意义可知无理数有:,,因此取到无理数的概率为.故答案为:.考点:概率17、或【分析】即直线位于双曲线下方部分,根据图象即可得到答案.【详解】解:即直线位于双曲线下方部分,根据图象可知此时或.【点睛】本题考查了一次函数和反比例函数的图象和性质,用图解法解不等式.18、1【分析】由a+b2=2得出b2=2-a,代入a2+5b2得出a2+5b2=a2+5(2-a)=a2-5a+10,再利用配方法化成a2+5b2=(a-,即可求出其最小值.【详解】∵a+b2=2,

∴b2=2-a,a≤2,

∴a2+5b2=a2+5(2-a)=a2-5a+10=(a-,

当a=2时,

a2+b2可取得最小值为1.

故答案是:1.【点睛】考查了二次函数的最值,解题关键是根据题意得出a2+5b2=(a-.三、解答题(共78分)19、(1)(0,3);(2)y=﹣x2+2x+3;(3)①;②当点P的坐标为(1,4)时,△PAD的面积等于△DAE的面积.【分析】(1)将代入二次函数解析式即可得点C的坐标;(2)把A(3,0),B(﹣1,0)代入y=ax2+bx+3即可得出抛物线的解析式;(3)①设直线直线AC的解析式为,把A(3,0),C代入即可得直线AC的解析式;②存在点P,使得△PAD的面积等于△DAE的面积;设点P(x,﹣x2+2x+3)则点D(x,﹣x+3),可得PD=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x,DE=﹣x+3,根据S△PAD=S△DAE时,即可得PD=DE,即可得出结论.【详解】解:(1)由y=ax2+bx+3,令∴点C的坐标为(0,3);(2)把A(3,0),B(﹣1,0)代入y=ax2+bx+3得,解得:,∴抛物线的解析式为:y=﹣x2+2x+3;(3)①设直线直线AC的解析式为,把A(3,0),C代入得,解得,∴直线AC的解析式为;②存在点P,使得△PAD的面积等于△DAE的面积,理由如下:设点P(x,﹣x2+2x+3)则点D(x,﹣x+3),∴PD=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x,DE=﹣x+3,当S△PAD=S△DAE时,有,得PD=DE,∴﹣x2+3x=﹣x+3解得x1=1,x2=3(舍去),∴y=﹣x2+2x+3=﹣12+2+3=4,∴当点P的坐标为(1,4)时,△PAD的面积等于△DAE的面积.【点睛】本题考查了用待定系数法求解析式,二次函数的综合,掌握知识点是解题关键.20、35°【分析】连接OD,根据切线的性质得∠ODC=90°,根据圆周角定理即可求得答案.【详解】连接OD,∵CD为⊙O的切线,∴∠ODC=90°,∴∠DOC=90°﹣∠C=70°,由圆周角定理得,∠A=∠DOC=35°.【点睛】本题考查了切线的性质和圆周角定理,有圆的切线时,常作过切点的半径.21、(1);(2)需要灰瓷砖125000块,白瓷砖250000块、蓝瓷砖为250000块【分析】(1)根据每块瓷砖的面积S=楼体外表的总面积÷所需的瓷砖块数n块,求出即可;(2)设用灰瓷砖x块,则白瓷砖、蓝瓷砖分别为2x块、2x块,再用n=625000求出即可.【详解】解;(1)∵每块瓷砖的面积楼体外表的总面积÷所需的瓷砖块数块,由此可得出与的函数关系式是:(2)当时,设用灰瓷砖块,则白瓷砖、蓝瓷砖分别为块、块,依据题意得出:,解得:,∴需要灰瓷砖125000块,白瓷砖250000块、蓝瓷砖为250000块.【点睛】此题主要考查了反比例函数的应用,根据已知得出瓷砖总块数进而得出等式方程是解题关键.22、(1)(2)【解析】试题分析:(1)因为总共有4个球,红球有2个,因此可直接求得红球的概率;(2)根据题意,列表表示小球摸出的情况,然后找到共12种可能,而两次都是红球的情况有2种,因此可求概率.试题解析:解:(1).(2)用表格列出所有可能的结果:第二次

第一次

红球1

红球2

白球

黑球

红球1

(红球1,红球2)

(红球1,白球)

(红球1,黑球)

红球2

(红球2,红球1)

(红球2,白球)

(红球2,黑球)

白球

(白球,红球1)

(白球,红球2)

(白球,黑球)

黑球

(黑球,红球1)

(黑球,红球2)

(黑球,白球)

由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能.∴P(两次都摸到红球)==.考点:概率统计23、(1)28.8;(2)【分析】(1)用喜欢声乐的人数除以它所占百分比即可得到调查的总人数,用总人数分别减去喜欢舞蹈、乐器、和其它的人数得到喜欢戏曲的人数,即可得出答案;(2)先画树状图展示所有12种等可能的结果数,再找出恰好选中“①舞蹈、③声乐”两项活动的结果数,然后根据概率公式计算.【详解】(1)抽查的人数=8÷16%=50(名);喜欢“戏曲”活动项目的人数=50﹣12﹣16﹣8﹣10=4(人);扇形统计图中“戏曲”部分对应的扇形的圆心角为360°×=28.8°;故答案为:28.8;(2)舞蹈、乐器、声乐、戏曲的序号依次用①②③④表示,画树状图:共有12种等可能的结果数,其中恰好选中“①舞蹈、③声乐”两项活动的有2种情况,所有故恰好选中“舞蹈、声乐”两项活动的概率==.【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了扇形统计图和条形统计图.24、(1)证明见解析;(2).【分析】(1)由正方形的性质得出BC=DC,∠BCG=∠DCE=90°,利用角边角证明△BGC≌△DEC,然后可得出CG=CE;

(2)由线段的和差,正方形的性质求出正方形的边长为3,根据勾股定理求出线段BD=6,过点G作GH⊥DB,根据勾股定理可得出HG=DH=2,进而求出BH=4,BG=2,在Rt△HBG中可求出cos∠DBG的值.【详解】解:(1)∵四边形ABCD是正方形,

∴BC=DC,∠BCG=∠DCE=90°,

又∵BF⊥DE,

∴∠GFD=90°,

又∵∠GBC+∠BGC+∠GCB=180°,

∠GFD+∠FDG+∠DGF=180°,

∠BGC=∠DGF,∴∠CBG=∠CDE,

在△BGC和△DEC中,,∴△BGC≌△DEC(ASA),

∴CG=CE;

(2)过点G作GH⊥BD,设CE=x,∵CG=C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论