高考数学理科一轮复习第7章立体几何第7讲课后作业_第1页
高考数学理科一轮复习第7章立体几何第7讲课后作业_第2页
高考数学理科一轮复习第7章立体几何第7讲课后作业_第3页
高考数学理科一轮复习第7章立体几何第7讲课后作业_第4页
高考数学理科一轮复习第7章立体几何第7讲课后作业_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

A组基础关1.如图,在空间直角坐标系中有直三棱柱ABC-A1B1C1,CA=CC1=2CB,则直线BC1与直线AB1夹角的余弦值为()A.eq\f(\r(5),5) B.eq\f(\r(5),3)C.eq\f(2\r(5),5) D.eq\f(3,5)答案A解析不妨设CB=1,则B(0,0,1),A(2,0,0),C1(0,2,0),B1(0,2,1),∴eq\o(BC1,\s\up6(→))=(0,2,-1),eq\o(AB1,\s\up6(→))=(-2,2,1).cos〈eq\o(BC1,\s\up6(→)),eq\o(AB1,\s\up6(→))〉=eq\f(\o(BC1,\s\up6(→))·\o(AB1,\s\up6(→)),|\o(BC1,\s\up6(→))||\o(AB1,\s\up6(→))|)=eq\f(0+4-1,\r(5)×3)=eq\f(\r(5),5).∴直线BC1与直线AB1夹角的余弦值为eq\f(\r(5),5).2.(2018·沧州模拟)如图所示,在正方体ABCD-A′B′C′D′中,棱长为1,E,F分别是BC,CD上的点,且BE=CF=a(0<a<1),则D′E与B′F的位置关系是()A.平行 B.垂直C.相交 D.与a值有关答案B解析建立如图所示空间直角坐标系.则D′(0,0,1),E(1-a,1,0),B′(1,1,1),F(0,1-a,0),∴eq\o(D′E,\s\up6(→))=(1-a,1,-1),eq\o(B′F,\s\up6(→))=(-1,-a,-1).∴eq\o(D′E,\s\up6(→))·eq\o(B′F,\s\up6(→))=(1-a)×(-1)+1×(-a)+(-1)×(-1)=a-1-a+1=0.∴eq\o(D′E,\s\up6(→))⊥eq\o(B′F,\s\up6(→)),即D′E⊥B′F.故选B.3.在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=90°,D,E,F分别是棱AB,BC,CP的中点,AB=AC=1,PA=2,则直线PA与平面DEF所成角的正弦值为()A.eq\f(1,5) B.eq\f(2\r(5),5)C.eq\f(\r(5),5) D.eq\f(2,5)答案C解析以A为原点,AB,AC,AP所在直线分别为x轴、y轴、z轴建立如图所示的空间直角坐标系,由AB=AC=1,PA=2,得A(0,0,0),B(1,0,0),C(0,1,0),P(0,0,2),Deq\b\lc\(\rc\(\a\vs4\al\co1(\f(1,2))),0,0eq\b\lc\\rc\)(\a\vs4\al\co1()),Eeq\b\lc\(\rc\(\a\vs4\al\co1())eq\f(1,2),eq\f(1,2),0eq\b\lc\\rc\)(\a\vs4\al\co1()),Feq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(1,2),1)),∴eq\o(PA,\s\up6(→))=(0,0,-2),eq\o(DE,\s\up6(→))=eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(1,2),0)),eq\o(DF,\s\up6(→))=eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,2),\f(1,2),1)).设平面DEF的法向量为n=(x,y,z),则由eq\b\lc\{\rc\(\a\vs4\al\co1(n·\o(DE,\s\up6(→))=0,,n·\o(DF,\s\up6(→))=0,))得eq\b\lc\{\rc\(\a\vs4\al\co1(y=0,,-x+y+2z=0,))取z=1,则n=(2,0,1),设PA与平面DEF所成的角为θ,则sinθ=eq\f(|\o(PA,\s\up6(→))·n|,|\o(PA,\s\up6(→))||n|)=eq\f(\r(5),5),∴PA与平面DEF所成角的正弦值为eq\f(\r(5),5).故选C.4.二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB,已知AB=2,AC=3,BD=4,CD=eq\r(17),则该二面角的大小为()A.30° B.45°C.60° D.120°答案C解析由已知可得,eq\o(CA,\s\up6(→))·eq\o(AB,\s\up6(→))=0,eq\o(AB,\s\up6(→))·eq\o(BD,\s\up6(→))=0,eq\o(CD,\s\up6(→))=eq\o(CA,\s\up6(→))+eq\o(AB,\s\up6(→))+eq\o(BD,\s\up6(→)),∴|eq\o(CD,\s\up6(→))|2=|eq\o(CA,\s\up6(→))+eq\o(AB,\s\up6(→))+eq\o(BD,\s\up6(→))|2=|eq\o(CA,\s\up6(→))|2+|eq\o(AB,\s\up6(→))|2+|eq\o(BD,\s\up6(→))|2+2eq\o(CA,\s\up6(→))·eq\o(AB,\s\up6(→))+2eq\o(AB,\s\up6(→))·eq\o(BD,\s\up6(→))+2eq\o(CA,\s\up6(→))·eq\o(BD,\s\up6(→))=32+22+42+2×3×4cos〈eq\o(CA,\s\up6(→)),eq\o(BD,\s\up6(→))〉=(eq\r(17))2,∴cos〈eq\o(CA,\s\up6(→)),eq\o(BD,\s\up6(→))〉=-eq\f(1,2),即〈eq\o(CA,\s\up6(→)),eq\o(BD,\s\up6(→))〉=120°,∴二面角的大小为60°.故选C.5.如图,正三棱柱ABC-A1B1C1的所有棱长都相等,E,F,G分别为AB,AA1,A1C1的中点,则B1F与平面GEF所成角的正弦值为()A.eq\f(3,5) B.eq\f(5,6)C.eq\f(3\r(3),10) D.eq\f(3\r(6),10)答案A解析设正三棱柱的棱长为2,取AC的中点D,连接DG,DB,分别以DA,DB,DG所在的直线为x轴、y轴、z轴建立空间直角坐标系,如图所示,则B1(0,eq\r(3),2),F(1,0,1),Eeq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2),\f(\r(3),2),0)),G(0,0,2),eq\o(B1F,\s\up6(→))=(1,-eq\r(3),-1),eq\o(EF,\s\up6(→))=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2),-\f(\r(3),2),1)),eq\o(GF,\s\up6(→))=(1,0,-1).设平面GEF的法向量n=(x,y,z),则eq\b\lc\{\rc\(\a\vs4\al\co1(\o(EF,\s\up6(→))·n=0,,\o(GF,\s\up6(→))·n=0,))即eq\b\lc\{\rc\(\a\vs4\al\co1(\f(1,2)x-\f(\r(3),2)y+z=0,,x-z=0,))取x=1,则z=1,y=eq\r(3),故n=(1,eq\r(3),1)为平面GEF的一个法向量,所以cos〈n,eq\o(B1F,\s\up6(→))〉=eq\f(1-3-1,\r(5)×\r(5))=-eq\f(3,5),所以B1F与平面GEF所成角的正弦值为eq\f(3,5).故选A.6.如图所示,在平行六面体ABCD-A1B1C1D1中,点M,P,Q分别为棱AB,CD,BC的中点,若平行六面体的各棱长均相等,则:①A1M∥D1P;②A1M∥B1Q;③A1M∥平面DCC1D1;④A1M∥平面D1PQB1.以上说法正确的个数为()A.1 B.2C.3 D.4答案C解析eq\o(A1M,\s\up6(→))=eq\o(A1A,\s\up6(→))+eq\o(AM,\s\up6(→))=eq\o(A1A,\s\up6(→))+eq\f(1,2)eq\o(AB,\s\up6(→)),eq\o(D1P,\s\up6(→))=eq\o(D1D,\s\up6(→))+eq\o(DP,\s\up6(→))=eq\o(A1A,\s\up6(→))+eq\f(1,2)eq\o(AB,\s\up6(→)),∴eq\o(A1M,\s\up6(→))∥eq\o(D1P,\s\up6(→)),所以A1M∥D1P,由线面平行的判定定理可知,A1M∥平面DCC1D1,A1M∥平面D1PQB1.①③④正确.7.已知长方体ABCD-A1B1C1D1中,AB=AD=2,AA1=4,点E,F分别为BB1,CD的中点,则点F到平面A1D1E的距离为()A.eq\r(2) B.eq\f(3\r(2),2)C.2eq\r(2) D.2eq\r(3)答案B解析以点A为坐标原点,AB,AD,AA1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,如图所示,A1(0,0,4),D1(0,2,4),E(2,0,2),F(1,2,0),eq\o(A1D1,\s\up6(→))=(0,2,0),eq\o(A1E,\s\up6(→))=(2,0,-2)易知平面A1D1E的法向量可取n=(1,0,1),eq\o(A1F,\s\up6(→))=(1,2,-4),d=eq\f(|\o(A1F,\s\up6(→))·n|,|n|)=eq\f(3\r(2),2).8.在棱长为2的正方体ABCD-A1B1C1D1中,O是底面ABCD的中心,E,F分别是CC1,AD的中点,则异面直线OE和FD1所成的角的余弦值等于________.答案eq\f(\r(15),5)解析以D为原点,分别以DA,DC,DD1为x轴、y轴、z轴建立空间直角坐标系,∴F(1,0,0),D1(0,0,2),O(1,1,0),E(0,2,1).∴eq\o(FD1,\s\up6(→))=(-1,0,2),eq\o(OE,\s\up6(→))=(-1,1,1).∴cos〈eq\o(FD1,\s\up6(→)),eq\o(OE,\s\up6(→))〉=eq\f(1+2,\r(5)·\r(3))=eq\f(\r(15),5).∴异面直线OE与FD1所成角的余弦值为eq\f(\r(15),5).9.已知V为矩形ABCD所在平面外一点,且VA=VB=VC=VD,eq\o(VP,\s\up6(→))=eq\f(1,3)eq\o(VC,\s\up6(→)),eq\o(VM,\s\up6(→))=eq\f(2,3)eq\o(VB,\s\up6(→)),eq\o(VN,\s\up6(→))=eq\f(2,3)eq\o(VD,\s\up6(→)).则VA与平面PMN的位置关系是________.答案平行解析如图,设eq\o(VA,\s\up6(→))=a,eq\o(VB,\s\up6(→))=b,eq\o(VC,\s\up6(→))=c,则eq\o(VD,\s\up6(→))=a+c-b,由题意知eq\o(PM,\s\up6(→))=eq\f(2,3)b-eq\f(1,3)c,eq\o(PN,\s\up6(→))=eq\f(2,3)eq\o(VD,\s\up6(→))-eq\f(1,3)eq\o(VC,\s\up6(→))=eq\f(2,3)a-eq\f(2,3)b+eq\f(1,3)c.因此eq\o(VA,\s\up6(→))=eq\f(3,2)eq\o(PM,\s\up6(→))+eq\f(3,2)eq\o(PN,\s\up6(→)),∴eq\o(VA,\s\up6(→)),eq\o(PM,\s\up6(→)),eq\o(PN,\s\up6(→))共面.又∵VA⊄平面PMN,∴VA∥平面PMN.10.如图,已知四棱锥P-ABCD的底面ABCD是等腰梯形,AB∥CD,且AC⊥BD,AC与BD交于O,PO⊥底面ABCD,PO=2,AB=2eq\r(2),E,F分别是AB,AP的中点.则二面角F-OE-A的余弦值为________.答案eq\f(\r(3),3)解析以O为坐标原点,OB,OC,OP所在直线分别为x轴、y轴、z轴建立如图所示的空间直角坐标系Oxyz,由题知,OA=OB=2,则A(0,-2,0),B(2,0,0),P(0,0,2),E(1,-1,0),F(0,-1,1),则eq\o(OE,\s\up6(→))=(1,-1,0),eq\o(OF,\s\up6(→))=(0,-1,1),设平面OEF的法向量为m=(x,y,z),则eq\b\lc\{\rc\(\a\vs4\al\co1(m·\o(OE,\s\up6(→))=0,,m·\o(OF,\s\up6(→))=0,))即eq\b\lc\{\rc\(\a\vs4\al\co1(x-y=0,,-y+z=0.))令x=1,可得m=(1,1,1).易知平面OAE的一个法向量为n=(0,0,1),则cos〈m,n〉=eq\f(m·n,|m||n|)=eq\f(\r(3),3).由图知二面角F-OE-A为锐角,所以二面角F-OE-A的余弦值为eq\f(\r(3),3).B组能力关1.(2018·河南百校联盟联考)已知斜四棱柱ABCD-A1B1C1D1的各棱长均为2,∠A1AD=60°,∠BAD=90°,平面A1ADD1⊥平面ABCD,则直线BD1与平面ABCD所成的角的正切值为()A.eq\f(\r(3),4) B.eq\f(\r(13),4)C.eq\f(\r(39),13) D.eq\f(\r(39),3)答案C解析取AD中点O,连接OA1,易证A1O⊥平面ABCD.建立如图所示的空间直角坐标系,得B(2,-1,0),D1(0,2,eq\r(3)),eq\o(BD,\s\up6(→))1=(-2,3,eq\r(3)),平面ABCD的一个法向量为n=(0,0,1),设BD1与平面ABCD所成的角为θ,∴sinθ=eq\f(|\o(BD,\s\up6(→))1·n|,|\o(BD,\s\up6(→))1||n|)=eq\f(\r(3),4),则cosθ=eq\f(\r(13),4),∴tanθ=eq\f(\r(39),13).故选C.2.如图所示,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.设二面角D-AE-C为60°,AP=1,AD=eq\r(3),则三棱锥E-ACD的体积为________.答案eq\f(\r(3),8)解析因为PA⊥平面ABCD,且四边形ABCD为矩形,所以AB,AD,AP两两垂直.如图,以A为坐标原点,Aeq\o(B,\s\up6(→))的方向为x轴的正方向,建立空间直角坐标系Axyz,则D(0,eq\r(3),0),Eeq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(\r(3),2),\f(1,2))),所以Aeq\o(E,\s\up6(→))=eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(\r(3),2),\f(1,2))).设B(m,0,0)(m>0),则C(m,eq\r(3),0),Aeq\o(C,\s\up6(→))=(m,eq\r(3),0).设n1=(x,y,z)为平面ACE的法向量,则eq\b\lc\{\rc\(\a\vs4\al\co1(n1·A\o(C,\s\up6(→))=0,,n1·A\o(E,\s\up6(→))=0,))即eq\b\lc\{\rc\(\a\vs4\al\co1(mx+\r(3)y=0,,\f(\r(3),2)y+\f(1,2)z=0,))可取n1=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(3),m),-1,\r(3))).易知n2=(1,0,0)为平面DAE的一个法向量,由题设知|cos〈n1,n2〉|=eq\f(1,2),即eq\r(\f(3,3+4m2))=eq\f(1,2),解得m=eq\f(3,2).因为E为PD的中点,所以三棱锥E-ACD的高为eq\f(1,2).所以三棱锥E-ACD的体积V=eq\f(1,3)×eq\f(1,2)×eq\r(3)×eq\f(3,2)×eq\f(1,2)=eq\f(\r(3),8).3.(2017·全国卷Ⅲ)a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最大值为60°.其中正确的是________.(填写所有正确结论的编号)答案②③解析依题意建立如图所示的空间直角坐标系.设等腰直角三角形ABC的直角边长为1.由题意知点B在平面xOy中形成的轨迹是以C为圆心,1为半径的圆.设直线a的方向向量为a=(0,1,0),直线b的方向向量为b=(1,0,0),eq\o(CB,\s\up6(→))以Ox轴为始边沿逆时针方向旋转的旋转角为θ,θ∈[0,2π),则B(cosθ,sinθ,0),∴eq\o(AB,\s\up6(→))=(cosθ,sinθ,-1),|eq\o(AB,\s\up6(→))|=eq\r(2).设直线AB与a所成夹角为α,则cosα=eq\f(\b\lc\|\rc\|(\a\vs4\al\co1(\o(AB,\s\up6(→))·a)),\b\lc\|\rc\|(\a\vs4\al\co1(a))\b\lc\|\rc\|(\a\vs4\al\co1(\o(AB,\s\up6(→)))))=eq\f(\r(2),2)|sinθ|∈eq\b\lc\[\rc\](\a\vs4\al\co1(0,\f(\r(2),2))),∴45°≤α≤90°,∴③正确,④错误.设直线AB与b所成夹角为β,则cosβ=eq\f(\b\lc\|\rc\|(\a\vs4\al\co1(\o(AB,\s\up6(→))·b)),\b\lc\|\rc\|(\a\vs4\al\co1(b))\b\lc\|\rc\|(\a\vs4\al\co1(\o(AB,\s\up6(→)))))=eq\f(\r(2),2)|cosθ|.当直线AB与a的夹角为60°,即α=60°时,则|sinθ|=eq\r(2)cosα=eq\r(2)cos60°=eq\f(\r(2),2),∴|cosθ|=eq\f(\r(2),2).∴cosβ=eq\f(\r(2),2)|cosθ|=eq\f(1,2).∵0°≤β≤90°,∴β=60°,即直线AB与b的夹角为60°.∴②正确,①错误.4.如图,在三棱锥P-ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上.已知BC=8,PO=4,AO=3,OD=2.(1)证明:AP⊥BC;(2)若点M是线段AP上一点,且AM=3.试证明平面AMC⊥平面BMC.证明如图所示,以O为坐标原点,以射线OP为z轴的正半轴建立空间直角坐标系Oxyz.则O(0,0,0),A(0,-3,0),B(4,2,0),C(-4,2,0),P(0,0,4).(1)∵eq\o(AP,\s\up6(→))=(0,3,4),eq\o(BC,\s\up6(→))=(-8,0,0),∴eq\o(AP,\s\up6(→))·eq\o(BC,\s\up6(→))=(0,3,4)·(-8,0,0)=0,eq\o(AP,\s\up6(→))⊥eq\o(BC,\s\up6(→)),即AP⊥BC.(2)由(1)知|AP|=5,又|AM|=3,且点M在线段AP上,∴eq\o(AM,\s\up6(→))=eq\f(3,5)eq\o(AP,\s\up6(→))=eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(9,5),\f(12,5))).又eq\o(AC,\s\up6(→))=(-4,5,0),eq\o(BA,\s\up6(→))=(-4,-5,0),∴eq\o(BM,\s\up6(→))=eq\o(BA,\s\up6(→))+eq\o(AM,\s\up6(→))=eq\b\lc\(\rc\)(\a\vs4\al\co1(-4,-\f(16,5),\f(12,5))),则Aeq\o(P,\s\up6(→))·Beq\o(M,\s\up6(→))=(0,3,4)·eq\b\lc\(\rc\)(\a\vs4\al\co1(-4,-\f(16,5),\f(12,5)))=0,∴eq\o(AP,\s\up6(→))⊥eq\o(BM,\s\up6(→)),即AP⊥BM,又根据(1)的结论知AP⊥BC,BM∩BC=B,∴AP⊥平面BMC,于是AM⊥平面BMC.又AM⊂平面AMC,故平面AMC⊥平面BCM.C组素养关1.在如图所示的多面体中,四边形ABCD是平行四边形,四边形BDEF是矩形,ED⊥平面ABCD,∠ABD=eq\f(π,6),AB=2AD.(1)求证:平面BDEF⊥平面ADE;(2)若ED=BD,求直线AF与平面AEC所成角的正弦值.解(1)证明:在△ABD中,由正弦定理知eq\f(AB,sin∠ADB)=eq\f(AD,sin∠ABD),所以sin∠ADB=eq\f(AB·sin∠ABD,AD)=eq\f(2AD·sin\f(π,6),AD)=1,所以∠ADB=90°,即BD⊥AD.因为DE⊥平面ABCD,BD⊂平面ABCD,所以DE⊥BD.又AD∩DE=D,所以BD⊥平面ADE.因为BD⊂平面BDEF,所以平面BDEF⊥平面ADE.(2)由(1)可得,在Rt△ABD中,∠BAD=eq\f(π,3),BD=eq\r(3)AD,又由ED=BD,设AD=1,则BD=ED=eq\r(3).因为DE⊥平面ABCD,BD⊥AD,所以可以点D为坐标原点,DA,DB,DE所在直线分别为x轴、y轴、z轴建立空间直角坐标系,如图所示.则A(1,0,0),C(-1,eq\r(3),0),E(0,0,eq\r(3)),F(0,eq\r(3),eq\r(3)),所以eq\o(AE,\s\up6(→))=(-1,0,eq\r(3)),eq\o(AC,\s\up6(→))=(-2,eq\r(3),0).设平面AEC的法向量为n=(x,y,z),则eq\b\lc\{\rc\(\a\vs4\al\co1(n·\o(AE,\s\up6(→))=0,,n·\o(AC,\s\up6(→))=0,))即eq\b\lc\{\rc\(\a\vs4\al\co1(-x+\r(3)z=0,,-2x+\r(3)y=0,))令z=1,得n=(eq\r(3),2,1)为平面AEC的一个法向量.因为eq\o(AF,\s\up6(→))=(-1,eq\r(3),eq\r(3)),所以cos〈n,eq\o(AF,\s\up6(→))〉=eq\f(n·\o(AF,\s\up6(→)),|n||\o(AF,\s\up6(→))|)=eq\f(\r(42),14),所以直线AF与平面AEC所成角的正弦值为eq\f(\r(42),14).2.如图,球O内接四面体ABCD,AB为球O的直径,平面BCD截球得圆O′,BD为圆O′的直径,C为圆O′上一点,AD⊥平面BCD,AD=2,BD=2eq\r(2),M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.(1)证明:PQ∥平面BCD;(2)若二面角C-BM-D的大小为60°,求∠BDC的大小.解(1)证明:连接PO′,由中位线易知PO′∥AD,从而PO′⊥平面BCD.如图,以O′为原点,O′D,O′P所在射线分别为y轴、z轴的正半轴,建立空间直角坐标系O′xyz.由题意知A(0,eq\r(2),2),B(0,-eq\r(2),0),D(0,eq\r(2),0).设点C的坐标为(x0,y0,0),因为eq\o(AQ,\s\up6(→))=3eq\o(QC,\s\up6(→)),所以Qeq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,4)x0,\f(\r(2),4)+\f(3,4)y0,\f(1,2))).因为M为AD的中点,故M(0,eq\r(2),1).又P为BM的中点,故Peq\b\lc\(\rc\)(\a\vs4\al\co1(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论