湖北省武汉市六中学致诚中学2025届数学九上期末教学质量检测试题含解析_第1页
湖北省武汉市六中学致诚中学2025届数学九上期末教学质量检测试题含解析_第2页
湖北省武汉市六中学致诚中学2025届数学九上期末教学质量检测试题含解析_第3页
湖北省武汉市六中学致诚中学2025届数学九上期末教学质量检测试题含解析_第4页
湖北省武汉市六中学致诚中学2025届数学九上期末教学质量检测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省武汉市六中学致诚中学2025届数学九上期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2) B.(3,1) C.(2,2) D.(4,2)2.在奔驰、宝马、丰田、三菱等汽车标志图形中,为中心对称图形的是()A.B.C.D.3.如图,在四边形中,,对角线、交于点有以下四个结论其中始终正确的有()①;②;③;④A.1个 B.2个 C.3个 D.4个4.从一定高度抛一个瓶盖100次,落地后盖面朝下的有55次,则下列说法中错误的是A.盖面朝下的频数是55B.盖面朝下的频率是0.55C.盖面朝下的概率不一定是0.55D.同样的试验做200次,落地后盖面朝下的有110次5.下列事件中,是必然事件的是()A.经过有交通信号灯的路口,遇到红灯 B.明天太阳从西方升起C.三角形内角和是 D.购买一张彩票,中奖6.如图,△ABC的顶点都是正方形网格中的格点,则sin∠ABC等于(

)A. B. C. D.7.如图,已知等边△ABC的边长为4,以AB为直径的圆交BC于点F,CF为半径作圆,D是⊙C上一动点,E是BD的中点,当AE最大时,BD的长为()A. B. C.4 D.68.如图,已知梯形ABCO的底边AO在轴上,BC∥AO,AB⊥AO,过点C的双曲线交OB于D,且OD:DB=1:2,若△OBC的面积等于3,则k的值()A.等于2 B.等于 C.等于 D.无法确定9.已知点A(2,y1)、B(4,y2)都在反比例函数(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2 B.y1<y2 C.y1=y2 D.无法确定10.如图,正方形中,为的中点,的垂直平分线分别交,及的延长线于点,,,连接,,,连接并延长交于点,则下列结论中:①;②;③;④;⑤;⑥;⑦.正确的结论的个数为()A.3 B.4 C.5 D.611.将抛物线y=﹣3x2先向左平移1个单位长度,再向下平移2个单位长度,得到的抛物线的解析式是()A.y=﹣3(x﹣1)2﹣2 B.y=﹣3(x﹣1)2+2C.y=﹣3(x+1)2﹣2 D.y=﹣3(x+1)2+212.若反比例函数的图象上有两点P1(1,y1)和P2(2,y2),那么()A.y1>y2>0 B.y2>y1>0 C.y1<y2<0 D.y2<y1<0二、填空题(每题4分,共24分)13.将二次函数y=x2﹣6x+8化成y=a(x+m)2+k的形式是_____.14.如图,抛物线y=﹣x2﹣2x+3与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1关于点B的中心对称得C2,C2与x轴交于另一点C,将C2关于点C的中心对称得C3,连接C1与C3的顶点,则图中阴影部分的面积为.15.若二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).则S=a+b+c的值的变化范围是_____.16.二次函数y=2(x﹣1)2+3的图象的顶点坐标是_________17.已知:如图,在菱形ABCD中,F为边AB的中点,DF与对角线AC交于点G,过G作GE⊥AD于点E,若AB=2,且∠1=∠2,则下列结论中一定成立的是_____(把所有正确结论的序号都填在横线上).①DF⊥AB;②CG=2GA;③CG=DF+GE;④S四边形BFGC=﹣1.18.已知某小区的房价在两年内从每平方米8100元增加到每平方米12500元,设该小区房价平均每年增长的百分率为,根据题意可列方程为______.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,点A在第二象限内,点B在x轴上,∠BAO=30°,AB=BO,反比例函数y=(x<0)的图象经过点A(1)求∠AOB的度数(2)若OA=,求点A的坐标(3)若S△ABO=,求反比例函数的解析式20.(8分)某高速公路建设中,需要确定隧道AB的长度.已知在离地面1800m高度C处的飞机上,测量人员测得正前方A,B两点处的俯角分别为60°和45°(即∠DCA=60°,∠DCB=45°).求隧道AB的长.(结果保留根号)21.(8分)如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k≠0)的图象交于A(﹣1,3),B(b,1)两点.(1)求反比例函数的表达式;(2)在x轴上找一点P,使PA+PB的值最小,并求满足条件的点P的坐标;(3)连接OA,OB,求△OAB的面积.22.(10分)画出如图所示几何体的三视图23.(10分)某景区检票口有A、B、C、D共4个检票通道.甲、乙两人到该景区游玩,两人分别从4个检票通道中随机选择一个检票.(1)甲选择A检票通道的概率是;(2)求甲乙两人选择的检票通道恰好相同的概率.24.(10分)在正方形中,点是边上一点,连接.图1图2(1)如图1,点为的中点,连接.已知,,求的长;(2)如图2,过点作的垂线交于点,交的延长线于点,点为对角线的中点,连接并延长交于点,求证:.25.(12分)如图,点分别在的边上,已知.(1)求证:.(2)若,求的长.26.有甲、乙、丙三个不透明的布袋,甲袋中装有2个相同的小球,它们分别标有字母A和B;乙袋中装有3个相同的小球,它们分别标有字母C、D和E;丙袋中装有2个相同的小球,它们分别标有字母H和I.从三个布袋中各随机取出一个小球.求:(1)取出的3个小球恰好有2个元音字母的概率;(2)取出的3个小球全是辅音字母的概率.

参考答案一、选择题(每题4分,共48分)1、A【详解】∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,∴=,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴=,∴=,解得:OA=1,∴OB=3,∴C点坐标为:(3,2),故选A.2、B【解析】试题分析:根据中心对称图形的概念,A、C、D都不是中心对称图形,是中心对称图形的只有B.故选B.考点:中心对称图形3、C【分析】根据相似三角形的判定定理、三角形的面积公式判断即可.【详解】解:∵AB∥CD,∴△AOB∽△COD,①正确;∵∠ADO不一定等于∠BCO,∴△AOD与△ACB不一定相似,②错误;∴,③正确;∵△ABD与△ABC等高同底,∴,∵,∴,④正确;故选C.【点睛】本题主要考查了相似三角形的判定与性质,掌握相似三角形的判定与性质是解题的关键.4、D【分析】根据频数,频率及用频率估计概率即可得到答案.【详解】A、盖面朝下的频数是55,此项正确;B、盖面朝下的频率是=0.55,此项正确;C、盖面朝下的概率接近于0.55,但不一定是0.55,此项正确;D、同样的试验做200次,落地后盖面朝下的在110次附近,不一定必须有110次,此项错误;故选:D.【点睛】本题考查了频数,频率及用频率估计概率,掌握知识点是解题关键.5、C【分析】必然事件就是一定发生的事件,依据定义即可判断【详解】解:A.经过有交通信号灯的路口,遇到红灯是随机事件;B.明天太阳从西方升起是不可能事件;C.任意画一个三角形,其内角和是是必然事件;D.购买一张彩票,中奖是随机事件;故选:【点睛】本题考查的是必然事件,必然事件是一定发生的事件.6、C【解析】试题解析:设正方形网格每个小正方形边长为1,则BC边上的高为2,则,.故本题应选C.7、B【分析】点E在以F为圆心的圆上运到,要使AE最大,则AE过F,根据等腰三角形的性质和圆周角定理证得F是BC的中点,从而得到EF为△BCD的中位线,根据平行线的性质证得CD⊥BC,根据勾股定理即可求得结论.【详解】解:点D在⊙C上运动时,点E在以F为圆心的圆上运到,要使AE最大,则AE过F,连接CD,∵△ABC是等边三角形,AB是直径,∴EF⊥BC,∴F是BC的中点,∵E为BD的中点,∴EF为△BCD的中位线,∴CD∥EF,∴CD⊥BC,BC=4,CD=2,故BD=,故选:B.【点睛】本题主要考查等边三角形的性质,圆周角定理,三角形中位线的性质以及勾股定理,熟练并正确的作出辅助圆是解题的关键.8、B【解析】如图分别过D作DE⊥Y轴于E,过C作CF⊥Y轴于F,则△ODE∽△OBF,∵OD:DB=1:2∴相似比=1:3∴面积比=OD:DB=1:9即又∴∴解得K=故选B9、B【详解】试题分析:∵当k<0时,y=在每个象限内,y随x的增大而增大,∴y1<y2,故选B.考点:反比例函数增减性.10、B【分析】①作辅助线,构建三角形全等,证明△ADE≌△GKF,则FG=AE,可得FG=2AO;②设正方形ABCD的边长为2x,则AD=AB=2x,DE=EC=x,证明△ADE∽△HOA,得,于是可求BH及HE的值,可作出判断;③分别表示出OD、OC,根据勾股定理逆定理可以判断;④证明∠HEA=∠AED=∠ODE,OE≠DE,则∠DOE≠∠HEA,OD与HE不平行;

⑤由②可得,根据AR∥CD,得,则;⑥证明△HAE∽△ODE,可得,等量代换可得OE2=AH•DE;⑦分别计算HC、OG、BH的长,可得结论.【详解】解:①如图,过G作GK⊥AD于K,

∴∠GKF=90°,

∵四边形ABCD是正方形,

∴∠ADE=90°,AD=AB=GK,

∴∠ADE=∠GKF,

∵AE⊥FH,

∴∠AOF=∠OAF+∠AFO=90°,

∵∠OAF+∠AED=90°,

∴∠AFO=∠AED,

∴△ADE≌△GKF,

∴FG=AE,

∵FH是AE的中垂线,

∴AE=2AO,

∴FG=2AO,

故①正确;②设正方形ABCD的边长为2x,则AD=AB=2x,DE=EC=x,,易得△ADE∽△HOA,,,Rt△AHO中,由勾股定理得:AH=,∴BH=AH-AB=,∵HE=AH=,∴HE=5BH;

故②正确;③,,∴,∴OC与OD不垂直,故③错误;

④∵FH是AE的中垂线,

∴AH=EH,

∴∠HAE=∠HEA,

∵AB∥CD,

∴∠HAE=∠AED,

Rt△ADE中,∵O是AE的中点,

∴OD=AE=OE,

∴∠ODE=∠AED,

∴∠HEA=∠AED=∠ODE,

当∠DOE=∠HEA时,OD∥HE,

但AE>AD,即AE>CD,

∴OE>DE,即∠DOE≠∠HEA,

∴OD与HE不平行,

故④不正确;

⑤由②知BH=,,延长CM、BA交于R,

∵RA∥CE,

∴∠ARO=∠ECO,

∵AO=EO,∠ROA=∠COE,

∴△ARO≌△ECO,

∴AR=CE,

∵AR∥CD,,故⑤正确;

⑥由①知:∠HAE=∠AEH=∠OED=∠ODE,

∴△HAE∽△ODE,∵AE=2OE,OD=OE,

∴OE•2OE=AH•DE,

∴2OE2=AH•DE,

故⑥正确;

⑦由②知:HC=,∵AE=2AO=OH=,tan∠EAD=,,,∵FG=AE,,∴OG+BH=,∴OG+BH≠HC,

故⑦不正确;

综上所述,本题正确的有;①②⑤⑥,共4个,

故选:B.【点睛】本题是相似三角形的判定与性质以及勾股定理、线段垂直平分线的性质、正方形的性质的综合应用,正确作辅助线是关键,解答时证明三角形相似是难点.11、C【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=﹣3x1向左平移1个单位所得直线解析式为:y=﹣3(x+1)1;再向下平移1个单位为:y=﹣3(x+1)1﹣1,即y=﹣3(x+1)1﹣1.故选C.【点睛】此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.12、A【详解】∵点P1(1,y1)和P2(2,y2)在反比例函数的图象上,∴y1=1,y2=,∴y1>y2>1.故选A.二、填空题(每题4分,共24分)13、y=(x﹣3)2﹣1【分析】直接利用配方法将原式变形进而得出答案.【详解】y=x2﹣6x+8=x2﹣6x+9﹣1=(x﹣3)2﹣1.故答案为:y=(x﹣3)2﹣1.【点睛】本题考查了二次函数的三种形式,正确配方是解答本题的关键.14、1【分析】将x轴下方的阴影部分沿对称轴分成两部分补到x轴上方,即可将不规则图形转换为规则的长方形,则可求出.【详解】∵抛物线与轴交于点、,∴当时,则,解得或,则,的坐标分别为(-3,0),(1,0),∴的长度为4,从,两个部分顶点分别向下作垂线交轴于、两点.根据中心对称的性质,轴下方部分可以沿对称轴平均分成两部分补到与,如图所示,阴影部分转化为矩形,根据对称性,可得,则,利用配方法可得,则顶点坐标为(-1,4),即阴影部分的高为4,.故答案为:1.【点睛】本题考查了中心对称的性质、配方法求抛物线的顶点坐标及求抛物线与x轴交点坐标,解题关键是将不规则图形通过对称转换为规则图形,求阴影面积经常要使用转化的数学思想.15、1<S<2【分析】将已知两点坐标代入二次函数解析式,得出c的值及a、b的关系式,代入S=a+b+c中消元,再根据对称轴的位置判断S的取值范围即可.【详解】解:将点(1,1)和(﹣1,1)分别代入抛物线解析式,得c=1,a=b﹣1,∴S=a+b+c=2b,由题设知,对称轴x=且,∴2b>1.又由b=a+1及a<1可知2b=2a+2<2.∴1<S<2.故答案为:1<S<2.【点睛】本题考查了二次函数图象上点的坐标特点,运用了消元法的思想,对称轴的性质,需要灵活运用这些性质解题.16、(1,3)【解析】首先知二次函数的顶点坐标根据顶点式y=a(x+)2+,知顶点坐标是(-,),把已知代入就可求出顶点坐标.【详解】解:y=ax2+bx+c,配方得y=a(x+)2+,顶点坐标是(-,),∵y=2(x-1)2+3,∴二次函数y=2(x-1)2+3的图象的顶点坐标是(1,3).【点睛】解此题的关键是知二次函数y=ax2+bx+c的顶点坐标是(-,),和转化形式y=a(x+)2+,代入即可.17、①②③【分析】①由四边形ABCD是菱形,得出对角线平分对角,求得∠GAD=∠2,得出AG=GD,AE=ED,由SAS证得△AFG≌△AEG,得出∠AFG=∠AEG=90°,即可得出①正确;②由DF⊥AB,F为边AB的中点,证得AD=BD,证出△ABD为等边三角形,得出∠BAC=∠1=∠2=30°,由AC=2AB•cos∠BAC,AG,求出AC,AG,即可得出②正确;③由勾股定理求出DF,由GE=tan∠2•ED求出GE,即可得出③正确;④由S四边形BFGC=S△ABC﹣S△AGF求出数值,即可得出④不正确.【详解】∵四边形ABCD是菱形,∴∠FAG=∠EAG,AB=AD,BC∥AD,∴∠1=∠GAD.∵∠1=∠2,∴∠GAD=∠2,∴AG=GD.∵GE⊥AD,∴GE垂直平分AD,∴AE=ED.∵F为边AB的中点,∴AF=AE,在△AFG和△AEG中,∵,∴△AFG≌△AEG(SAS),∴∠AFG=∠AEG=90°,∴DF⊥AB,∴①正确;连接BD交AC于点O.∵DF⊥AB,F为边AB的中点,∴AFAB=1,AD=BD.∵AB=AD,∴AD=BD=AB,∴△ABD为等边三角形,∴∠BAD=∠BCD=60°,∴∠BAC=∠1=∠2=30°,∴AC=2AO=2AB•cos∠BAC=2×22,AG,∴CG=AC﹣AG=2,∴CG=2GA,∴②正确;∵GE垂直平分AD,∴EDAD=1,由勾股定理得:DF,GE=tan∠2•ED=tan30°×1,∴DF+GECG,∴③正确;∵∠BAC=∠1=30°,∴△ABC的边AC上的高等于AB的一半,即为1,FGAG,S四边形BFGC=S△ABC﹣S△AGF211,∴④不正确.故答案为:①②③.【点睛】本题考查了菱形的性质、全等三角形的判定与性质、勾股定理、三角函数、线段垂直平分线的性质、含30°角的直角三角形的性质等知识;本题综合性强,有一定难度.18、【分析】根据相等关系:8100×(1+平均每年增长的百分率)2=12500即可列出方程.【详解】解:根据题意,得:.故答案为:.【点睛】本题考查的是一元二次方程的应用之增长降低率问题,一般的,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为:.三、解答题(共78分)19、(1)30°;(2)A(﹣6,);(3)【分析】(1)由题意直接根据等腰三角形的性质进行分析即可;(2)由题意过点A作AC⊥x轴于点C,由∠AOB=30°,解直角三角形可得出AC=2,再由锐角三角函数或勾股定理得出OC=6,即可求得A点的坐标;(3)根据题意设OB=AB=m,根据BA=BO可得出∠ABC=60°,由此可得出AC=m,由S△ABO=,列出关于m的方程,解方程求得m的值,进而AC和OC,结合反比例函数系数k的几何意义求得解析式.【详解】解(1)∵AB=BO,∠BAO=30°,∴∠AOB=∠BAO=30°.(2)过点A作AC⊥x轴,∵∴,∴A(﹣6,).(3)设OB=AB=,得出∠ABC=60°,在直角三角形ACB中得出AC=,∵S△ABO=,∴,∴,∴AC==,∴A(﹣3,).把A点坐标代入得反比例函数的解析式为.【点睛】本题考查反比例函数系数k的几何意义、特殊角的三角函数值,解题的关键是根据特殊角的三角函数值找出线段的长度.20、隧道AB的长为(1800﹣600)m【分析】易得∠CAO=60°,∠CBO=45°,利用相应的正切值可得BO,AO的长,相减即可得到AB的长.【详解】解:∵CDOB,∴∠CAO=∠DCA=60°,∠CBO=∠DCB=45°,在RtCAO中,tan∠CAO==tan60°,∴,∴OA=600,在RtCAO中,tan∠CBO==tan45°,∴OB=OC=1800,∴AB=OB﹣OA=1800﹣600.答:隧道AB的长为(1800﹣600)m.【点睛】本题考查了解直角三角形的应用﹣俯角和仰角,解答本题的关键是利用三角函数值得到与所求线段相关线段的长度.21、(1);(2)点P的坐标为(﹣,0);(3)1【分析】(1)根据待定系数法,即可得到答案;(2)先求出点B的坐标,作点B关于x轴的对称点D,连接AD,交x轴于点P,此时PA+PB的值最小,再求出AD所在直线的解析式,进而即可求解;(3)设直线AB与y轴交于E点,根据S△OAB=S△OBE﹣S△AOE,即可求解.【详解】(1)将点A(﹣1,3)代入y=得:3=,解得:k=﹣3,∴反比例函数的表达式为:y=﹣;(2)把B(b,1)代入y=x+1得:b+1=1,解得:b=﹣3,∴点B的坐标为(﹣3,1),作点B关于x轴的对称点D,连接AD,交x轴于点P,此时PA+PB的值最小,如图,∵点B的坐标为(﹣3,1),∴点D的坐标为(﹣3,﹣1).设直线AD的函数表达式为:y=mx+n,将点A(﹣1,3)、D(﹣3,﹣1)代入y=mx+n,得,解得,∴直线AD的函数表达式为:y=2x+5,当y=0时,2x+5=0,解得:x=﹣,∴点P的坐标为(﹣,0);(3)设直线AB与y轴交于E点,如图,令x=0,则y=0+1=1,则点E的坐标为(0,1),∴S△OAB=S△OBE﹣S△AOE=×1×3﹣×1×1=1.【点睛】本题主要考查反比例函数的图象和性质与一次函数的综合,掌握“马饮水”模型和割补法求面积,是解题的关键.22、见解析【分析】主视图、左视图、俯视图是分别从几何体的正面、左面和上面所得到的图形,画图时要将几何体边缘和棱以及顶点都体现出来.【详解】解:如下图【点睛】本题考查的知识点是作简单几何体的三视图,掌握三视图的作法是解题的关键.23、(1);(2).【分析】(1)直接利用概率公式求解;(2)通过列表展示所有9种等可能结果,再找出通道不同的结果数,然后根据概率公式求解.【详解】(1)解:一名游客经过此检票口时,选择A通道通过的概率=,故答案为:;(2)解:列表如下:ABCDA(A,A)(A,B)(A,C)(A,D)B(B,A)(B,B)(B,C)(B,D)C(C,A)(C,B)(C,C)(C,D)D(D,A)(D,B)(D,C)(D,D)共有16种可能结果,并且它们的出现是等可能的,“甲、乙两人选择相同检票通道”记为事件E,它的发生有4种可能:(A,A)、(B,B)、(C,C)、(D,D)∴P(E)==.【点睛】本题考查了

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论