版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省济宁汶上县联考2025届九年级数学第一学期期末学业质量监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列事件是必然事件的()A.抛掷一枚硬币,四次中有两次正面朝上B.打开电视体育频道,正在播放NBA球赛C.射击运动员射击一次,命中十环D.若a是实数,则|a|≥02.如图,△ABC与△A′B′C′是位似图形,PB′=BB′,A′B′=2,则AB的长为()A.1 B.2 C.4 D.83.下列语句所描述的事件是随机事件的是()A.经过任意两点画一条直线 B.任意画一个五边形,其外角和为360°C.过平面内任意三个点画一个圆 D.任意画一个平行四边形,是中心对称图形4.硬币有数字的一面为正面,另一面为反面.投掷一枚均匀的硬币一次,硬币落地后,可能性最大的是()A.正面向上 B.正面不向上 C.正面或反面向上 D.正面和反面都不向上5.若将抛物线y=5x2先向右平移2个单位,再向上平移1个单位,得到的新抛物线的表达式为()A.y=5(x﹣2)2+1 B.y=5(x+2)2+1 C.y=5(x﹣2)2﹣1 D.y=5(x+2)2﹣16.在中,,垂足为D,则下列比值中不等于的是()A. B. C. D.7.如图相交于点,下列比例式错误的是()A. B. C. D.8.已知某函数的图象与函数的图象关于直线对称,则以下各点一定在图象上的是()A. B. C. D.9.已知的图象如图,则和的图象为()A. B. C. D.10.下列式子中,y是x的反比例函数的是()A. B. C. D.二、填空题(每小题3分,共24分)11.计算sin60°cos60°的值为_____.12.抛物线y=(m2-2)x2-4mx+n的对称轴是x=2,且它的最高点在直线y=x+2上,则m=________,n=________.13.把抛物线y=2x2向上平移3个单位,得到的抛物线的解析式为_______________.14.若是方程的根,则的值为__________.15.设m、n是一元二次方程x2+3x-7=0的两个根,则m2+4m+n=_____.16.抛物线的开口方向是_____.17.如图是一个圆环形黄花梨木摆件的残片,为求其外圆半径,小林在外圆上任取一点A,然后过点A作AB与残片的内圆相切于点D,作CD⊥AB交外圆于点C,测得CD=15cm,AB=60cm,则这个摆件的外圆半径是_____cm.18.若关于x的方程有两个不相等的实数根,则a的取值范围是________.三、解答题(共66分)19.(10分)已知二次函数的图像经过点(-2,40)和点(6,-8),求一元二次方程的根.20.(6分)如图,在矩形ABCD中,AB=6,AD=3,点E是边CD的中点,点P,Q分别是射线DC与射线EB上的动点,连结PQ,AP,BP,设DP=t,EQ=2t.(1)当点P在线段DE上(不包括端点)时.①求证:AP=PQ;②当AP平分∠DPB时,求△PBQ的面积.(2)在点P,Q的运动过程中,是否存在这样的t,使得△PBQ为等腰三角形?若存在,请求出t的值;若不存在,试说明理由.21.(6分)如图,锐角三角形中,,分别是,边上的高,垂足为,.(1)证明:.(2)若将,连接起来,则与能相似吗?说说你的理由.22.(8分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)方程ax2+bx+c=0的两个根为(2)y随x的增大而减小的自变量x的取值范围为;(3)若方程ax2+bx+c=k有两个不相等的实数根时,k的取值范围为;(4)求出此抛物线的解析式.23.(8分)解方程:(x+3)2=2x+1.24.(8分)今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签的方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是事件,“小悦被抽中”是事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.25.(10分)如图,CD是⊙O的切线,点C在直径AB的延长线上.(1)求证:∠CAD=∠BDC;(2)若BD=AD,AC=3,求CD的长.26.(10分)已知二次函数y=ax2﹣2ax+k(a、k为常数,a≠0),线段AB的两个端点坐标分别为A(﹣1,2),B(2,2).(1)该二次函数的图象的对称轴是直线;(2)当a=﹣1时,若点B(2,2)恰好在此函数图象上,求此二次函数的关系式;(3)当a=﹣1时,当此二次函数的图象与线段AB只有一个公共点时,求k的取值范围;(4)若k=a+3,过点A作x轴的垂线交x轴于点P,过点B作x轴的垂线交x轴于点Q,当﹣1<x<2,此二次函数图象与四边形APQB的边交点个数是大于0的偶数时,直接写出k的取值范围.
参考答案一、选择题(每小题3分,共30分)1、D.【解析】试题解析:A、是随机事件,不符合题意;B、是随机事件,不符合题意;==C、是随机事件,不符合题意;D、是必然事件,符合题意.故选D.考点:随机事件.2、C【分析】根据位似图形的对应边互相平行列式计算,得到答案.【详解】∵△ABC与△A′B′C′是位似图形,∴A′B′∥AB,∴△PA′B′∽△PAB,∴==,∴AB=4,故选:C.【点睛】本题考查的是位似变换的概念、相似三角形的性质,掌握如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形是解题的关键.3、C【分析】直接利用多边形的性质以及直线的性质、中心对称图形的定义分别分析得出答案.【详解】解:A、经过任意两点画一条直线,是必然事件,故此选项错误;B、任意画一个五边形,其外角和为360°,是必然事件,故此选项错误;C、过平面内任意三个点画一个圆,是随机事件,故此选项错误;D、任意画一个平行四边形,是中心对称图形,是必然事件,故此选项错误;故选:C.【点睛】此题主要考查了随机事件的定义,有可能发生有可能不发生的时间叫做随机时间,正确掌握相关性质是解题关键.4、C【分析】根据概率公式分别求出各选项事件的概率,即可判断.【详解】解:若不考虑硬币竖起的情况,A.正面向上概率为1÷2=;B.正面不向上的概率为1÷2=;C.正面或反面向上的概率为2÷2=1;D.正面和反面都不向上的概率为0÷2=0∵1>>0∴正面或反面向上的概率最大故选C.【点睛】此题考查的是比较几个事件发生的可能性的大小,掌握概率公式是解决此题的关键.5、A【解析】试题解析:将抛物线向右平移2个单位,再向上平移1个单位,得到的抛物线的解析式是故选A.点睛:二次函数图像的平移规律:左加右减,上加下减.6、D【分析】利用锐角三角函数定义判断即可.【详解】在Rt△ABC中,sinA=,在Rt△ACD中,sinA=,∵∠A+∠B=90°,∠B+∠BCD=90°,∴∠A=∠BCD,在Rt△BCD中,sinA=sin∠BCD=,故选:D.【点睛】此题考查了锐角三角函数的定义,熟练掌握锐角三角函数定义是解本题的关键.7、D【分析】根据相似三角形的性质和平行线分线段成比例定理,对每个选项进行判断,即可得到答案.【详解】解:∵,∴,,故A、B正确;∴△CDG∽△FEG,∴,故C正确;不能得到,故D错误;故选:D.【点睛】本题考查了相似三角形的判定和性质,平行线分线段成比例定理,解题的关键是熟练掌握平行线分线段成比例定理.8、A【分析】分别求出各选项点关于直线对称点的坐标,代入函数验证是否在其图象上,从而得出答案.【详解】解:A.点关于对称的点为点,而在函数上,点在图象上;B.点关于对称的点为点,而不在函数上,点不在图象上;同理可C、D不在图象上.故选:.【点睛】本题考查反比例函数图象及性质;熟练掌握函数关于直线的对称时,对应点关于直线对称是解题的关键.9、C【解析】根据二次函数y=ax2+bx+c(a≠0)的图象可以得到a<0,b>0,c<0,由此可以判定y=ax+b经过一、二、四象限,双曲线在二、四象限.【详解】根据二次函数y=ax2+bx+c(a≠0)的图象,可得a<0,b>0,c<0,∴y=ax+b过一、二、四象限,双曲线在二、四象限,∴C是正确的.故选C.【点睛】此题考查一次函数,二次函数,反比例函数中系数及常数项与图象位置之间关系.10、C【分析】根据反比例函数的定义,反比例函数的一般式是y=(k≠0),即可判定各函数的类型是否符合题意.【详解】A、是正比例函数,错误;B、不是反比例函数,错误;C、是反比例函数,正确;D、不是反比例函数,错误.故选:C.【点睛】本题考查反比例函数的定义特点,反比例函数解析式的一般形式为:y=(k≠0).二、填空题(每小题3分,共24分)11、【分析】直接利用特殊角的三角函数值代入求出答案.【详解】原式=×.故答案为:.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.12、-1-1【分析】由对称轴可求得m的值,且可求得顶点坐标,再把顶点坐标代入直线解析式可求得n.【详解】∵抛物线y=(m2−2)x2−4mx+n的对称轴是x=2,
∴−=2,解得m=2或m=−1,
∵抛物线有最高点,
∴m2−2<0,
∴m=−1,
∴抛物线解析式为y=−x2+4x+n=−(x−2)2+4+n,
∴顶点坐标为(2,4+n),
∵最高点在直线y=x+2上,
∴4+n=1+2,解得n=−1,
故答案为−1,−1.【点睛】本题考查二次函数的性质、一次函数图象上点的坐标特征和二次函数的最值,解题的关键是掌握二次函数的性质、一次函数图象上点的坐标特征.13、【解析】由“上加下减”的原则可知,将抛物线向上平移3单位,得到的抛物线的解析式是故答案为【点睛】二次函数图形平移规律:左加右减,上加下减.14、1【分析】根据一元二次方程的解的定义即可求出答案.【详解】由题意可知:2m2−3m+1=0,∴2m2−3m=-1∴原式=-3(2m2−3m)+2019=1.故答案为:1.【点睛】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.15、1.【分析】求代数式的值,一元二次方程的解,一元二次方程根与系数的关系.【详解】解:∵m、n是一元二次方程x2+2x-7=0的两个根,∴m2+2m-7=0,即m2+2m=7;m+n=-2.∴m2+1m+n=(m2+2m)+(m+n)=7-2=1.故答案为:116、向上【分析】根据二次项系数的符号即可确定答案.【详解】其二次项系数为2,且二次项系数:2>0,所以开口方向向上,故答案为:向上.【点睛】本题考查了二次函数的性质,熟知二次函数y=ax2+bx+c(a≠0)图象的开口方向与a的值有关是解题的关键.17、37.1【分析】根据垂径定理求得AD=30cm,然后根据勾股定理得出方程,解方程即可求得半径.【详解】如图,设点O为外圆的圆心,连接OA和OC,∵CD=11cm,AB=60cm,∵CD⊥AB,∴OC⊥AB,∴AD=AB=30cm,∴设半径为rcm,则OD=(r﹣11)cm,根据题意得:r2=(r﹣11)2+302,解得:r=37.1,∴这个摆件的外圆半径长为37.1cm,故答案为37.1.【点睛】本题考查了垂径定理的应用以及勾股定理的应用,作出辅助线构建直角三角形是解本题的关键.18、且【分析】根据根的判别式∆>0,且二次项系数a-2≠0列式求解即可.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.【详解】由题意得,解得且,故答案为:且.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.解答时要注意二次项的系数不能等于零.三、解答题(共66分)19、x1=2,x2=8.【分析】把已知两点坐标代入二次函数解析式求出a与b的值,代入方程计算即可求出解.【详解】解:将点(-2,40)和点(6,-8)代入二次函数得,解得:∴求得二次函数关系式为,当y=0时,,解得x1=2,x2=8.【点睛】此题考查了抛物线与x轴的交点,抛物线与x轴的交点与根的判别式有关:根的判别式大于0,有两个交点;根的判别式大于0,没有交点;根的判别式等于0,有一个交点.20、(1)①见解析;②S△PBQ=18﹣93;(2)存在,满足条件的t的值为6﹣13或13或6+13.【解析】(1)①如图1中,过点Q作QF⊥CD于点F,证明Rt△ADP≌Rt△PFQ即可.②如图,过点A作PB的垂线,垂足为H,过点Q作PB的垂线,垂足为G.由Rt△ADP≌Rt△AHP,推出PH=PD=t,AH=AD=1.由Rt△AHP△Rt△PGQ,推出QG=PH=DP=t,在Rt△AHB中,则有12+(6﹣t)2=62,求出t即可解决问题.(2)分三种情形:①如图1﹣1中,若点P在线段DE上,当PQ=QB时.②如图1﹣2中,若点P在线段EC上(如图),当PB=BQ时.③如图1﹣1中,若点P在线段DC延长线上,QP=QB时,分别求解即可.【详解】(1)①证明:如图1中,过点Q作QF⊥CD于点F,∵点E是DC的中点,∴CE=DE=1=CB,又∵∠C=90°,∴∠CEB=∠CBE=45°,∵EQ=2t,DP=t,∴EF=FQ=t.∴FQ=DP,∴PF=PE+EF=PE+DP=DE=1∴PF=AD,∴Rt△ADP≌Rt△PFQ,∴AP=PQ.②如图,过点A作PB的垂线,垂足为H,过点Q作PB的垂线,垂足为G.由AP平分∠DPB,得∠APD=∠APB,易证Rt△ADP≌Rt△AHP,∴PH=PD=t,AH=AD=1.又∠APD=∠PAB,∴∠PAB=∠APB,∴PB=AB=8,易证Rt△AHP△Rt△PGQ,∴QG=PH=DP=t,在Rt△AHB中,则有12+(6﹣t)2=62,解得t=6﹣12,∴S△PBQ=12•PB•QG=12×6×(6﹣12)=18﹣9(1)①如图1﹣1中,若点P在线段DE上,当PQ=QB时,∴AP=PQ=QB=BE﹣EQ=12﹣2t,在Rt△APD中,由DP2+AD2=AP2,得t2+9=2(1﹣t)2,解得t=6﹣12或6+12(舍去)②如图1﹣2中,若点P在线段EC上(如图),当PB=BQ时,∴PB=BQ=2t﹣12,则在Rt△BCP中,由BP2=CP2+BC2,得2(t﹣1)2=(6﹣t)2+9,解得:t=12或-33③如图1﹣1中,若点P在线段DC延长线上,QP=QB时,∴AP=PQ=BQ=2t﹣12,在Rt△APD中,由DP2+AD2=AP2,得t2+9=2(t﹣1)2,解得t=6-33(舍去)或综上所述,满足条件的t的值为6﹣12或12或6+12.【点睛】本题属于四边形综合题,考查了矩形的性质,全等三角形的判定和性质,等腰直角三角形的判走和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决间题,属于中考压轴题.21、(1)见解析;(2)能,理由见解析.【分析】(1)根据已知利用有两个角相等的三角形相似判定即可;
(2)根据第一问可得到AD:AE=AC:AB,有一组公共角∠A,则可根据两组对应边的比相等且相应的夹角相等的两个三角形相似进行判定.【详解】证明:.证明:∵,分别是,边上的高,∴.∵,∴.若将,连接起来,则与能相似吗?说说你的理由.∵,∴.∴AD:AC=AE:AB∵,∴.【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.22、(1)x1=1,x2=1;(2)x>2;(1)k<2;(4).【分析】(1)利用二次函数与x轴的交点坐标与对应一元二次方程的解的关系即可写出;(2)由图像可知,在对称轴的右侧,y随x的增大而减小;(1)方程ax2+bx+c=k有两个不相等的实数根,即函数y=ax2+bx+c(a≠0)与y=k有两个交点,画图分析即可;’(4)由图像可知:该抛物线的顶点是(2,2),过(1,0),设抛物线解析式为:,把(1,0)代入,求出a即可.【详解】解:(1)当y=0时,函数图象与x轴的两个交点的横坐标即为方程ax2+bx+c=0的两个根,由图可知,方程的两个根为x1=1,x2=1.故答案为:x1=1,x2=1.(2)根据函数图象,在对称轴的右侧,y随x的增大而减小,此时,x>2,故答案为:x>2(1)方程ax2+bx+c=k有两个不相等的实数根,即函数y=ax2+bx+c(a≠0)与y=k有两个交点,如图所示:当k>2时,y=ax2+bx+c(a≠0)与y=k无交点;当k=2时,y=ax2+bx+c(a≠0)与y=k只有一个交点;当k<2时,函数y=ax2+bx+c(a≠0)与y=k有两个交点,故当k<2时,方程ax2+bx+c=k有两个不相等的实数根.故答案为:k<2.(4)由图像可知:该抛物线的顶点是(2,2),过(1,0),∴设抛物线解析式为:把(1,0)代入得:,∴,∴,∴抛物线解析式为.【点睛】此题考查了二次函数与x轴的交点坐标与对应一元二次方程的解的关系、通过图像观察抛物线的增减性、利用画图解决抛物线与直线的交点个数问题、求函数解析式,掌握二次函数的性质是解题的关键.23、x1=﹣3,x2=﹣1.【分析】利用因式分解法解方程即可.【详解】(x+3)2=2(x+3),(x+3)2﹣2(x+3)=0,(x+3)(x+3﹣2)=0,(x+3)(x+1)=0,∴x1=﹣3,x2=﹣1.24、(1)不可能;随机;;(2)【解析】(1)根据从女班干部中抽取,由此可知男生“小刚被抽中”是不可能事件,“小悦被抽中”是随机事件,第一次抽取有4种可能,“小悦被抽中”有1种可能,由此即可求得概率;(2)画树状图得到所有可能的情况,然后找出符合题意的情况数,利用概率公式进行计算即可得.【详解】(1)因为从女班干部中进行抽取,所以男生“小刚被抽中”是不可能事件,“小悦被抽中”是随机事件,第一次抽取有4种可能,“小悦被抽中”有1种可能,所以“小悦被抽中”的概率为,故答案为不可能,随机,;(2)画树状图如下:由树状图可知共12种可能,其中“小惠被抽中”有6种可能,所以“小惠被抽中”的概率是:.【点睛】本题考查了随机事件、不可能事件、列表或画树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.25、(1)证明见解析;(1)CD=1.【解析】分析:(1)连接OD,由OB=OD可得出∠OBD=∠ODB,根据切线的性质及直径所对的圆周角等于180°,利用等角的余角相等,即可证出∠CAD=∠BDC;(1)由∠C=∠C、∠CAD=∠CDB可得出△CDB∽△CAD,根据相似三角形的性质结合BD=AD、AC=3,即可求出CD的长.详(1)证明:连接OD,如图所示.∵OB=OD,∴∠OBD=∠ODB.∵CD是⊙O的切线,OD是⊙O的半径,∴∠ODB+∠BDC=90°.∵AB是⊙O的直径,∴∠ADB=90°,∴∠OBD+∠CAD=90°,∴∠CAD=∠BDC.(1)∵∠C=∠C,∠CAD=∠CDB,∴△CDB∽△CAD,∴.∵BD=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024汽车运输合同样本
- 2024专家建议应届生就业协议书应尽快转成劳动合同
- 2024年办公楼通风与空调施工合同
- 2024网站广告合同
- 2024南京徐工汽车制造有限公司矿卡合同
- 2024技术开发合同备案
- 2024年合同中的不可抗力:法律与实践
- 2024年个人股权质押贷款协议
- 2024年互联网解决方案外包合同
- 2024融资租赁合同纠纷案例
- 2023-2024学年山东省枣庄市滕州市七年级(上)期中数学试卷
- 安徽省芜湖市2023年七年级上学期语文期末试卷(附答案)
- 专题四“挺膺担当”主题团课
- 有色重金属选矿、冶炼平衡管理规范-预审稿
- 服务器需求及参数
- 公务员200道公务员面试试题及答案
- 上肢康复机器人说明书
- 危险化学品经营单位负责人和安全管理人员培训课件
- 如何撰写和发表高水平的科研论文-good ppt
- 测量血压的正确方法-PPT
- 新能源提车检查表
评论
0/150
提交评论