2022年安徽省“六校联盟”九年级数学第一学期期末监测试题含解析_第1页
2022年安徽省“六校联盟”九年级数学第一学期期末监测试题含解析_第2页
2022年安徽省“六校联盟”九年级数学第一学期期末监测试题含解析_第3页
2022年安徽省“六校联盟”九年级数学第一学期期末监测试题含解析_第4页
2022年安徽省“六校联盟”九年级数学第一学期期末监测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.《九章算术》是我国古代第一部自成体系的数学专著,书中记载:“今有圆材,埋在壁中,不知大小,以锯锯之,深两寸,锯道长八寸,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深2寸(ED=2寸),锯道长8寸”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算圆形木材的直径AC是()A.5寸 B.8寸 C.10寸 D.12寸2.点M(a,2a)在反比例函数y=的图象上,那么a的值是()A.4 B.﹣4 C.2 D.±23.如图,△ABC中,∠B=70°,则∠BAC=30°,将△ABC绕点C顺时针旋转得△EDC.当点B的对应点D恰好落在AC上时,∠CAE的度数是()A.30° B.40° C.50° D.60°4.已知m是方程的一个根,则代数式的值等于()A.2005 B.2006 C.2007 D.20085.把两个同样大小的含45°角的三角板如图所示放置,其中一个三角板的锐角顶点与另一个的直角顶点重合于点,且另三个锐角顶点在同一直线上,若,则的长是()A. B. C.0.5 D.6.二次函数y=x2+(t﹣1)x+2t﹣1的对称轴是y轴,则t的值为()A.0 B. C.1 D.27.下列说法正确的是()A.了解飞行员视力的达标率应使用抽样调查B.一组数据3,6,6,7,9的中位数是6C.从2000名学生中选200名学生进行抽样调查,样本容量为2000D.一组数据1,2,3,4,5的方差是108.方程的两根分别是,则等于()A.1 B.-1 C.3 D.-39.如图,在正方形网格中,已知的三个顶点均在格点上,则的正切值为()A. B. C. D.10.已知二次函数y=ax2+bx+c的x、y的部分对应值如表:则该函数的对称轴为()A.y轴 B.直线x= C.直线x=1 D.直线x=二、填空题(每小题3分,共24分)11.如图,已知中,,,,将绕点顺时针旋转得到,点、分别为、的中点,若点刚好落在边上,则______.12.如图,直线y=k1x+b与双曲线交于A、B两点,其横坐标分别为1和5,则不等式k1x<+b的解集是▲.13.把所有正整数从小到大排列,并按如下规律分组:(1)、(2,3)、(4,5,6)、(7,8,9,10)、……,若An=(a,b)表示正整数n为第a组第b个数(从左往右数),如A7=(4,1),则A20=______________.14.不透明袋子中装有7个球,其中有3个红球,4个黄球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是_____.15.如图,菱形ABCD的边AD与x轴平行,A、B两点的横坐标分别为1和3,反比例函数y=的图象经过A、B两点,则菱形ABCD的面积是_____;16.如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为_____.17.方程x2﹣9x=0的根是_____.18.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步560米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则a=______.三、解答题(共66分)19.(10分)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.20.(6分)超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到县城城南大道的距离为米的点处.这时,一辆出租车由西向东匀速行驶,测得此车从处行驶到处所用的时间为秒,且,.求、之间的路程;请判断此出租车是否超过了城南大道每小时千米的限制速度?21.(6分)如图,已知是边长为的等边三角形,动点、同时从、两点出发,分别沿、方向匀速移动,它们的移动速度都是,当点到达点时,、两点停止运动,设点的运动时间的秒,解答下列问题.(1)时,求的面积;(2)若是直角三角形,求的值;(3)用表示的面积并判断能否成立,若能成立,求的值,若不能成立,说明理由.22.(8分)对于平面直角坐标系中的两个图形K1和K2,给出如下定义:点G为图形K1上任意一点,点H为K2图形上任意一点,如果G,H两点间的距离有最小值,则称这个最小值为图形K1和K2的“近距离”。如图1,已知△ABC,A(-1,-8),B(9,2),C(-1,2),边长为的正方形PQMN,对角线NQ平行于x轴或落在x轴上.(1)填空:①原点O与线段BC的“近距离”为;②如图1,正方形PQMN在△ABC内,中心O’坐标为(m,0),若正方形PQMN与△ABC的边界的“近距离”为1,则m的取值范围为;(2)已知抛物线C:,且-1≤x≤9,若抛物线C与△ABC的“近距离”为1,求a的值;(3)如图2,已知点D为线段AB上一点,且D(5,-2),将△ABC绕点A顺时针旋转α(0º<α≤180º),将旋转中的△ABC记为△AB’C’,连接DB’,点E为DB’的中点,当正方形PQMN中心O’坐标为(5,-6),直接写出在整个旋转过程中点E运动形成的图形与正方形PQMN的“近距离”.23.(8分)如图,在平面直角坐标系中,已知三个顶点的坐标分别是,,.(1)以点为位似中心,将缩小为原来的得到,请在轴右侧画出;(2)的正弦值为.24.(8分)如图,在中,点在边上,,分别过点,作,的平行线,并交于点,且的延长线交于点,.(1)求证:.(2)求证:四边形为菱形.(3)若,,求四边形的面积.25.(10分)一个可以自由转动的转盘,其盘面分为等份,分别标上数字.小颖准备转动转盘次,现已转动次,每一次停止后,小颖将指针所指数字记录如下:次数数字小颖继续自由转动转盘次,判断是否可能发生“这次指针所指数字的平均数不小于且不大于”的结果?若有可能,计算发生此结果的概率,并写出计算过程;若不可能,请说明理由.(指针指向盘面等分线时为无效转次.)26.(10分)一艘渔船在A处观测到东北方向有一小岛C,已知小岛C周围4.8海里范围内是水产养殖场.渔船沿北偏东30°方向航行10海里到达B处,在B处测得小岛C在北偏东60°方向,这时渔船改变航线向正东(即BD)方向航行,这艘渔船是否有进入养殖场的危险?

参考答案一、选择题(每小题3分,共30分)1、C【分析】设⊙O的半径为r,在Rt△AEO中,AE=4,OE=r-2,OA=r,则有r2=42+(r-2)2,解方程即可.【详解】设⊙O的半径为r,在Rt△AEO中,AE=4,OE=r﹣2,OA=r,则有r2=42+(r﹣2)2,解得r=5,∴⊙O的直径为10寸,故选C.【点睛】本题主要考查垂径定理、勾股定理等知识,解决本题的关键是学会利用利用勾股定理构造方程进行求解.2、D【分析】根据点M(a,2a)在反比例函数y=的图象上,可得:,然后解方程即可求解.【详解】因为点M(a,2a)在反比例函数y=的图象上,可得:,,解得:,故选D.【点睛】本题主要考查反比例函数图象的上点的特征,解决本题的关键是要熟练掌握反比例函数图象上点的特征.3、C【解析】由三角形内角和定理可得∠ACB=80°,由旋转的性质可得AC=CE,∠ACE=∠ACB=80°,由等腰的性质可得∠CAE=∠AEC=50°.【详解】∵∠B=70°,∠BAC=30°∴∠ACB=80°∵将△ABC绕点C顺时针旋转得△EDC.∴AC=CE,∠ACE=∠ACB=80°∴∠CAE=∠AEC=50°故选C.【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键.4、D【分析】由m是方程x2-2006x+1=0的一个根,将x=m代入方程,得到关于m的等式,变形后代入所求式子中计算,即可求出值.【详解】解:∵m是方程x2-2006x+1=0的一个根,∴m2-2006m+1=0,即m2+1=2006m,m2=2006m−1,则=====2006+2=2008故选:D.【点睛】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.5、D【分析】过点D作BC的垂线DF,垂足为F,由题意可得出BC=AD=2,进而得出DF=BF=1,利用勾股定理可得出AF的长,即可得出AB的长.【详解】解:过点D作BC的垂线DF,垂足为F,由题意可得出,BC=AD=2,根据等腰三角形的三线合一的性质可得出,DF=BF=1利用勾股定理求得:∴故选:D.【点睛】本题考查的知识点是等腰直角三角形的性质,灵活运用等腰直角三角形的性质是解此题的关键.6、C【解析】根据二次函数的对称轴方程计算.【详解】解:∵二次函数y=x2+(t﹣1)x+2t﹣1的对称轴是y轴,∴﹣=0,解得,t=1,故选:C.【点睛】本题考查二次函数对称轴性质,熟练掌握对称轴的公式是解题的关键.7、B【解析】选项A,了解飞行员视力的达标率应使用全面调查,此选项错误;选项B,一组数据3,6,6,7,9的数的个数是奇数,故中位数是处于中间位置的数6,此选项正确;选项C,从2000名学生中选200名学生进行抽样调查,样本容量应该是200,此选项错误;选项D,一组数据1,2,3,4,5的平均数=(1+2+3+4+5)=3,方差=[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2,此选项错误.故答案选B.8、B【分析】根据一元二次方程根与系数的关系,即可得到答案.【详解】解:∵的两根分别是,∴,故选:B.【点睛】本题考查了一元二次方程根与系数的关系,解题的关键是熟练掌握一元二次方程根与系数的关系进行解题.9、D【分析】延长交网格于,连接,得直角三角形ACD,由勾股定理得出、,由三角函数定义即可得出答案.【详解】解:延长交网格于,连接,如图所示:则,,,的正切值;故选:D.【点睛】本题考查了解直角三角形以及勾股定理的运用;熟练掌握勾股定理,构造直角三角形是解题的关键.10、B【分析】根据表格中的数据可以写出该函数的对称轴,本题得以解决.【详解】解:由表格可得,该函数的对称轴是:直线x=,故选:B.【点睛】本题考查二次函数的性质,解题的关键是熟练运用二次函数的性质,本题属于基础题型.二、填空题(每小题3分,共24分)11、【分析】根据旋转性质及直角三角形斜边中线等于斜边一半,求出CD=CE=5,再根据勾股定理求DE长,的值即为等腰△CDE底角的正弦值,根据等腰三角形三线合一构建直角三角形求解.【详解】如图,过D点作DM⊥BC,垂足为M,过C作CN⊥DE,垂足为N,在Rt△ACB中,AC=8,BC=6,由勾股定理得,AB=10,∵D为AB的中点,∴CD=,由旋转可得,∠MCN=90°,MN=10,∵E为MN的中点,∴CE=,∵DM⊥BC,DC=DB,∴CM=BM=,∴EM=CE-CM=5-3=2,∵DM=,∴由勾股定理得,DE=,∵CD=CE=5,CN⊥DE,∴DN=EN=,∴由勾股定理得,CN=,∴sin∠DEC=.故答案为:.【点睛】本题考查旋转性质,直角三角形的性质和等腰三角形的性质,能够用等腰三角形三线合一的性质构建直角三角形解决问题是解答此题的关键.12、-2<x<-1或x>1.【解析】不等式的图象解法,平移的性质,反比例函数与一次函数的交点问题,对称的性质.不等式k1x<+b的解集即k1x-b<的解集,根据不等式与直线和双曲线解析式的关系,可以理解为直线y=k1x-b在双曲线下方的自变量x的取值范围即可.而直线y=k1x-b的图象可以由y=k1x+b向下平移2b个单位得到,如图所示.根据函数图象的对称性可得:直线y=k1x-b和y=k1x+b与双曲线的交点坐标关于原点对称.由关于原点对称的坐标点性质,直线y=k1x-b图象与双曲线图象交点A′、B′的横坐标为A、B两点横坐标的相反数,即为-1,-2.∴由图知,当-2<x<-1或x>1时,直线y=k1x-b图象在双曲线图象下方.∴不等式k1x<+b的解集是-2<x<-1或x>1.13、(6,5)【分析】通过新数组确定正整数n的位置,An=(a,b)表示正整数n为第a组第b个数(从左往右数),所有正整数从小到大排列第n个正整数,第一组(1),1个正整数,第二组(2,3)2个正整数,第三组(4,5,6)三个正整数,…,这样1+2+3+4+…+a>n,而1+2+3+4+…+(a-1)<n,能确第a组a个数从哪一个是开起,直到第b个数(从左往右数)表示正整数nA7表示正整数7按规律排1+2+3+4=10>7,1+2+3=6<7,说明7在第4组,第四组应有4个数为(7,8,9,10)而7是这组的第一个数,为此P7=(4,1),理解规律A20,先求第几组排进20,1+2+3+4+5+6=21>20,由1+2+3+4+5=15,第六组从16开始,按顺序找即可.【详解】A20是指正整数20的排序,按规律1+2+3+4+5+6=21>20,说明20在第六组,而1+2+3+4+5=15<20,第六组从16开始,取6个数即第六组数(16,17,18,19,20,21),从左数第5个数是20,故A20=(6,5).故答案为:(6,5).【点睛】本题考查按规律取数问题,关键是读懂An=(a,b)的含义,会用新数组来确定正整数n的位置.14、【解析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:∵袋子中共有7个球,其中红球有3个,∴从袋子中随机取出1个球,它是红球的概率是,故答案为:.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15、【分析】作AH⊥BC交CB的延长线于H,根据反比例函数解析式求出A的坐标、点B的坐标,求出AH、BH,根据勾股定理求出AB,根据菱形的面积公式计算即可.【详解】作AH⊥BC交CB的延长线于H,∵反比例函数y=的图象经过A、B两点,A、B两点的横坐标分别为1和3,∴A、B两点的纵坐标分别为3和1,即点A的坐标为(1,3),点B的坐标为(3,1),∴AH=3﹣1=2,BH=3﹣1=2,由勾股定理得,AB==2,∵四边形ABCD是菱形,∴BC=AB=2,∴菱形ABCD的面积=BC×AH=4,故答案为4.【点睛】本题考查的是反比例函数的系数k的几何意义、菱形的性质,根据反比例函数解析式求出A的坐标、点B的坐标是解题的关键.16、25【解析】试题解析:由题意17、x1=0,x2=1【分析】观察本题形式,用因式分解法比较简单,在提取x后,左边将变成两个式子相乘为0的情况,让每个式子分别为0,即可求出x.【详解】解:x2﹣1x=0即x(x﹣1)=0,解得x1=0,x2=1.故答案为x1=0,x2=1.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知因式分解法的应用.18、1【分析】由图可知,甲2秒跑了8米,可以求出甲的速度,根据乙100秒跑完了全程可知乙的速度,根据经过时间a秒,乙追上了甲,可列出方程解出a的值.【详解】解:由图象可得:甲的速度为8÷2=4米/秒,根据乙100秒跑完了全程可知乙的速度为:160÷100=1.6米/秒,经过a秒,乙追上甲,可列方程,∴,故答案为:1.【点睛】本题考查了行程问题中的数量关系的应用,追及问题在生活中的应用,认真分析函数图象的实际意义是解题的关键.三、解答题(共66分)19、(1)60;(2)四边形ACFD是菱形.理由见解析.【分析】(1)利用旋转的性质得出AC=CD,进而得出△ADC是等边三角形,即可得出∠ACD的度数;(2)利用直角三角形的性质得出FC=DF,进而得出AD=AC=FC=DF,即可得出答案.【详解】解:(1)∵在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,∴AC=DC,∠A=60°,∠DCE=∠ACB=90°,∴△ADC是等边三角形,∴∠ACD=60°,∴n的值是60;(2)四边形ACFD是菱形;理由:∵∠DCE=∠ACB=90°,F是DE的中点,∴FC=DF=FE,∵∠CDF=∠A=60°,∴△DFC是等边三角形,∴DF=DC=FC,∵△ADC是等边三角形,∴AD=AC=DC,∴AD=AC=FC=DF,∴四边形ACFD是菱形.20、(米);此车超过了每小时千米的限制速度.【分析】(1)利用三角函数在两个直角三角形中分别计算出BO、AO的长,即可算出AB的长;(2)利用路程÷时间=速度,计算出出租车的速度,再把60千米/时化为米/秒,再进行比较即可.【详解】由题意知:米,,,在直角三角形中,∵,∴米,在直角三角形中,∵,∴米,∴(米);∵从处行驶到处所用的时间为秒,∴速度为米/秒,∵千米/时米/秒,而,∴此车超过了每小时千米的限制速度.【点睛】此题是解直角三角形的应用,主要考查了锐角三角函数,从复杂的实际问题中整理出直角三角形并求解是解决此类题目的关键.21、(1);(2)或;(3)不能成立,理由见解析【分析】(1)根据题意利用等边三角形的性质,结合解直角三角形进行分析计算即可;(2)由题意分当时以及当两种情况,建立方程并分别求出t值即可;(3)根据题意用表示的面积,并利用解直角三角形的知识求出,根据得到方程,进而判断t值是否存在即可.【详解】解:(1)当时,由题意可知,∵是边长为的等边三角形,∴,∴是等边三角形,所以.(2)①当时,,,,,由得.②当,,,,,∴,得,解得:当或时,是直角三角形.(3),,∴,∴,由即得,,即t值无解,不能成立.【点睛】本题考查等边三角形相关的动点问题,熟练掌握等边三角形的性质结合一元二次方程和特殊三角函数值以及运用化形为数的思维进行分析是解题的关键.22、(1)①2;②;(2)或;(3)点E运动形成的图形与正方形PQMN的“近距离”为.【分析】(1)①由垂线段最短,即可得到答案;②根据题意,找出正方形PQMN与△ABC的边界的“近距离”为1,的临界点,然后分别求出m的最小值和最大值,即可得到m的取值范围;(2)根据题意,抛物线与△ABC的“近距离”为1时,可分为两种情况:当点C到抛物线的距离为1,即CD=1;当抛物线与线段AB的距离为1时,即GH=1;分别求出a的值,即可得到答案;(3)根据题意,取AB的中点F,连接EF,求出EF的长度,然后根据题意,求出点F,点Q的坐标,求出FQ的长度,即可得到EQ的长度,即可得到答案.【详解】解:(1)①∵B(9,2),C(,2),∴点B、C的纵坐标相同,∴线段BC∥x轴,∴原点O到线段BC的最短距离为2;即原点O与线段BC的“近距离”为2;故答案为:2;②∵A(-1,-8),B(9,2),C(-1,2),∴线段BC∥x轴,线段AC∥y轴,∴AC=BC=10,△ABC是等腰直角三角形,当点N与点O重合时,点N与线段AC的最短距离为1,则正方形PQMN与△ABC的边界的“近距离”为1,此时m为最小值,∵正方形的边长为,由勾股定理,得:,∴,(舍去);当点Q到线段AB的距离为1时,此时m为最大值,如图:∵QN=1,△QMN是等腰直角三角形,∴QM=,∵BD=9,△BDE是等腰直角三角形,∴DE=9,∵△OEM是等腰直角三角形,∴OE=OM=7,∴m的最大值为:,∴m的取值范围为:;故答案为:;(2)抛物线C:,且,若抛物线C与△ABC的“近距离”为1,由题可知,点C与抛物线的距离为1时,如图:∵点C的坐标为(,2),∴但D的坐标为(,3),把点D代入中,有,解得:;当线段AB与抛物线的距离为1时,近距离为1,如图:即GH=1,点H在抛物线上,过点H作AB的平行线,线段AB与y轴相交于点F,作FE⊥EH,垂足为E,∴EF=GH=1,∵∠FDE=∠A=45°,∴,∵点A(-1,-8),B(9,2),设直线AB为,∴,解得:,∴直线AB的解析式为:,∴直线EH的解析式为:;∴联合与,得,整理得:,∵直线EH与抛物线有一个交点,∴,解得:;综合上述,a的值为:或;(3)由题意,取AB的中点F,连接EF,如图:∵点A(-1,-8),B(9,2),∴,在中,F是AD的中点,点E是的中点,∴,∵点D的坐标为(5,-2),A(-1,-8),∴点F的坐标为(2,),∵在正方形PNMQ中,中心点的坐标为(5,),∴点Q的坐标为(6,),∴,∴;∴点E运动形成的图形与正方形PQMN的“近距离”为.【点睛】本题考查了图形的运动问题和最短路径问题,考查了二次函数的性质,正方形的性质,等腰直角三角形的性质,一次函数的平移,勾股定理,旋转的性质,根的判别式等知识,解题的关键是熟练掌握所学的知识,正确作出辅助线,作出临界点的图形,从而进行分析.注意运用数形结合的思想和分类讨论的思想进行解题.难度很大,是中考压轴题.23、(1)见解析;(2)【分析】(1)连接、,分别取、、的中点即可画出△,(2)利用正弦函数的定义可知.由,即可解决问题.【详解】解:(1)连接OA、OC,分别取OA、OB、OC的中点、、,顺次连接、、,△即为所求,如图所示,(2),,,,.,.【点睛】本题考查位似变换、平移变换等知识,锐角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论