2022-2023学年重庆市文理院附属中学数学九上期末教学质量检测模拟试题含解析_第1页
2022-2023学年重庆市文理院附属中学数学九上期末教学质量检测模拟试题含解析_第2页
2022-2023学年重庆市文理院附属中学数学九上期末教学质量检测模拟试题含解析_第3页
2022-2023学年重庆市文理院附属中学数学九上期末教学质量检测模拟试题含解析_第4页
2022-2023学年重庆市文理院附属中学数学九上期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,CD是⊙O的直径,已知∠1=30°,则∠2等于()A.30° B.45° C.60° D.70°2.在同一平面直角坐标系中,函数与的图象可能是()A. B.C. D.3.不等式组的整数解有()A.4个 B.3个 C.2个 D.1个4.若关于的一元二次方程有两个实数根则的取值范围是()A. B.且 C.且 D.5.一元二次方程的两个根为,则的值是()A.10 B.9 C.8 D.76.某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为2米,则这个坡面的坡度为()A.1:2 B.1:3 C.1: D.:17.下列运算中,正确的是()A.x3+x=x4 B.(x2)3=x6 C.3x﹣2x=1 D.(a﹣b)2=a2﹣b28.我市参加教师资格考试的人数逐年增加,据有关部门统计,2017年约为10万人次,2019年约为18.8万人次,设考试人数年均增长率为x,则下列方程中正确的是A.10(1+2x)=18.8 B.=10C.=18.8 D.=18.89.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AE的长为()A.10 B.12 C.16 D.1810.在△ABC中,∠C=90°,AC=8,BC=6,则sinB的值是()A. B. C. D.11.下列事件中是随机事件的是()A.校运会上立定跳远成绩为10米B.在只装有5个红球的袋中,摸出一个红球C.慈溪市明年五一节是晴天D.在标准大气压下,气温3°C时,冰熔化为水12.若方程有两个不相等的实数根,则实数的值可能是()A.3 B.4 C.5 D.6二、填空题(每题4分,共24分)13.二次函数y=x2﹣4x+3的对称轴方程是_____.14.如图,是的直径,点在上,且,垂足为,,,则__________.15.等腰Rt△ABC中,斜边AB=12,则该三角形的重心与外心之间的距离是_____.16.若=,则的值为______.17.已知,⊙O的半径为6,若它的内接正n边形的边长为6,则n=_____.18.如图,河的两岸、互相平行,点、、是河岸上的三点,点是河岸上一个建筑物,在处测得,在处测得,若米,则河两岸之间的距离约为______米(,结果精确到0.1米)(必要可用参考数据:)三、解答题(共78分)19.(8分)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为的中点,过点D作DE∥AC,交BC的延长线于点E.(1)判断DE与⊙O的位置关系,并说明理由;(2)若CE=,AB=6,求⊙O的半径.20.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)如果AB=5,BC=6,求DE的长.21.(8分)如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,∠ACB=90°,∠BAC=30°,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当点B于点O重合的时候,求三角板运动的时间;(2)三角板继续向右运动,当B点和E点重合时,AC与半圆相切于点F,连接EF,如图2所示.①求证:EF平分∠AEC;②求EF的长.22.(10分)如图,顶点为M的抛物线y=a(x+1)2-4分别与x轴相交于点A,B(点A在点B的)右侧),与y轴相交于点C(0,﹣3).(1)求抛物线的函数表达式;(2)判断△BCM是否为直角三角形,并说明理由.(3)抛物线上是否存在点N(不与点C重合),使得以点A,B,N为顶点的三角形的面积与S△ABC的面积相等?若存在,求出点N的坐标;若不存在,请说明理由.23.(10分)(1)计算:.(2)用适当方法解方程:(3)用配方法解方程:24.(10分)如图,△ABC中,E是AC上一点,且AE=AB,∠BAC=2∠EBC,以AB为直径的⊙O交AC于点D,交EB于点F.(1)求证:BC与⊙O相切;(2)若AB=8,BE=4,求BC的长.25.(12分)2013年,东营市某楼盘以每平方米6500元的均价对外销售.因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2015年的均价为每平方米5265元.(1)求平均每年下调的百分率;(2)假设2016年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款30万元,张强的愿望能否实现?(房价每平方米按照均价计算)26.为给邓小平诞辰周年献礼,广安市政府对城市建设进行了整改,如图所示,已知斜坡长60米,坡角(即)为,,现计划在斜坡中点处挖去部分斜坡,修建一个平行于水平线的休闲平台和一条新的斜坡(下面两个小题结果都保留根号).(1)若修建的斜坡BE的坡比为:1,求休闲平台的长是多少米?(2)一座建筑物距离点米远(即米),小亮在点测得建筑物顶部的仰角(即)为.点、、、,在同一个平面内,点、、在同一条直线上,且,问建筑物高为多少米?

参考答案一、选择题(每题4分,共48分)1、C【解析】试题分析:如图,连接AD.∵CD是⊙O的直径,∴∠CAD=90°(直径所对的圆周角是90°);在Rt△ABC中,∠CAD=90°,∠1=30°,∴∠DAB=60°;又∵∠DAB=∠2(同弧所对的圆周角相等),∴∠2=60°考点:圆周角定理2、D【分析】分两种情况讨论,当k>0时,分析出一次函数和反比例函数所过象限;再分析出k<0时,一次函数和反比例函数所过象限,符合题意者即为正确答案.【详解】当时,一次函数经过一、二、三象限,反比例函数经过一、三象限;当时,一次函数经过一、二、四象限,反比例函数经过二、四象限.观察图形可知,只有A选项符合题意.

故选:D.【点睛】本题主要考查了反比例函数的图象和一次函数的图象,熟悉两函数中k和b的符号对函数图象的影响是解题的关键.3、B【分析】先解出不等式组的解集,然后再把所有符合条件的整数解列举出来即可.【详解】解:解得,解得,∴不等式组的解集为:,整数解有1、2、3共3个,故选:B.【点睛】本题考查了一元一次不等式组的的解法,先分别求出各不等式的解集,注意化系数为1时,如果两边同时除以一个负数,不等号的方向要改变;再求各个不等式解集的公共部分,必要时,可用数轴来求公共解集.4、C【分析】由二次项系数非零结合根的判别式△,即可得出关于的一元一次不等式组,解之即可得出结论.【详解】解:关于的一元二次方程有两个不相等的实数根,,解得:且.故选:C.【点睛】本题考查了根的判别式以及一元二次方程的定义,根据二次项系数非零结合根的判别式△,列出关于的一元一次不等式组是解题的关键.5、D【分析】利用方程根的定义可求得,再利用根与系数的关系即可求解.【详解】为一元二次方程的根,,.根据题意得,,.故选:D.【点睛】本题主要考查了一元二次方程的解,根与系数的关系以及求代数式的值,熟练掌握根与系数的关系,是解题的关键.6、A【解析】根据坡面距离和垂直距离,利用勾股定理求出水平距离,然后求出坡度.【详解】水平距离==4,则坡度为:1:4=1:1.故选A.【点睛】本题考查了解直角三角形的应用,解答本题的关键是掌握坡度的概念:坡度是坡面的铅直高度h和水平宽度l的比.7、B【解析】试题分析:A、根据合并同类法则,可知x3+x无法计算,故此选项错误;B、根据幂的乘方的性质,可知(x2)3=x6,故正确;C、根据合并同类项法则,可知3x-2x=x,故此选项错误;D、根据完全平方公式可知:(a-b)2=a2-2ab+b2,故此选项错误;故选B.考点:1、合并同类项,2、幂的乘方运算,3、完全平方公式8、C【分析】根据增长率的计算公式:增长前的数量×(1+增长率)增长次数=增长后数量,从而得出答案.【详解】根据题意可得方程为:10(1+x)2=18.8,故选:C.【点睛】本题主要考查的是一元二次方程的应用,属于基础题型.解决这个问题的关键就是明确基本的计算公式.9、C【解析】先证明四边形ABEF是菱形,得出AE⊥BF,OA=OE,OB=OF=BF=6,由勾股定理求出OA,即可得出AE的长【详解】如图,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵∠BAD的平分线交BC于点E,∴∠DAE=∠BAE,∴∠BAE=∠AEB,∴AB=BE,同理可得AB=AF,∴AF=BE,∴四边形ABEF是平行四边形,∵AB=AF,∴四边形ABEF是菱形,AE⊥BF,OA=OE,OB=OF=BF=6,∴OA==8,∴AE=2OA=16;故选C.【点睛】本题考查平行四边形的性质与判定、等腰三角形的判定、菱形的判定和性质、勾股定理等知识;熟练掌握平行四边形的性质,证明四边形ABEF是菱形是解决问题的关键.10、A【分析】先根据勾股定理计算出斜边AB的长,然后根据正弦的定义求解.【详解】如图,∵∠C=90°,AC=8,BC=6,∴AB==10,∴sinB=.故选:A.【点睛】本题考查了正弦的定义:在直角三角形中,一锐角的正弦等于它的对边与斜边的比值.也考查了勾股定理.11、C【分析】根据随机事件的定义,就是可能发生也可能不发生的事件进行判断即可.【详解】解:A.“校运会上立定跳远成绩为10米”是不可能事件,因此选项A不符合题意;B.“在只装有5个红球的袋中,摸出一个红球”是必然事件,因此选项B不符合题意;C.“慈溪市明年五一节是晴天”可能发生,也可能不发生,是随机事件,因此选项C符合题意;D.“在标准大气压下,气温3°C时,冰熔化为水”是必然事件,因此选项D不符合题意;故选:C.【点睛】本题考查了随机事件、必然事件、不可能事件的定义,理解随机事件的定义是解题的关键.12、A【分析】根据一元二次方程有两个实数根可得:△>0,列出不等式即可求出的取值范围,从而求出实数的可能值.【详解】解:由题可知:解出:各个选项中,只有A选项的值满足该取值范围,故选A.【点睛】此题考查的是求一元二次方程的参数的取值范围,掌握一元二次方程根的情况与△的关系是解决此题的关键.二、填空题(每题4分,共24分)13、x=1【分析】二次函数y=ax1+bx+c的对称轴方程为x=﹣,根据对称轴公式求解即可.【详解】解:∵y=x1﹣4x+3,∴对称轴方程是:x=﹣=1.故答案为:x=1.【点睛】本题考查了根据二次函数的一般式求对称轴的公式,需要熟练掌握.14、2【分析】先连接OC,在Rt△ODC中,根据勾股定理得出OC的长,即可求得答案.【详解】连接OC,如图,

∵CD=4,OD=3,,

在Rt△ODC中,

∴,∵,∴.故答案为:.【点睛】此题考查了圆的认识,根据题意作出辅助线,构造出直角三角形是解答此题的关键.15、1.【分析】画出图形,找到三角形的重心与外心,利用重心和外心的性质求距离即可.【详解】如图,点D为三角形外心,点I为三角形重心,DI为所求.∵直角三角形的外心是斜边的中点,∴CD=AB=6,∵I是△ABC的重心,∴DI=CD=1,故答案为:1.【点睛】本题主要考查三角形的重心和外心,能够掌握三角形的外心和重心的性质是解题的关键.16、4【分析】由=可得,代入计算即可.【详解】解:∵=,∴,则故答案为:4.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.17、1【分析】根据题意作出图形,得到Rt△ADO,利用三角函数值计算出sin∠AOD=,得出∠AOD=15°,通过圆周角360°计算即可得出结果.【详解】解:如图所示:连接AO,BO,过点O做OD⊥AB,∵⊙O的半径为6,它的内接正n边形的边长为6,∴AD=BD=3,∴sin∠AOD==,∴∠AOD=15°,∴∠AOB=90°,∴n==1.故答案为:1.【点睛】本题考查了圆内接正多边形的性质,垂径定理的应用,三角函数值的应用,掌握圆的性质内容是解题的关键.18、54.6【分析】过P点作PD垂直直线b于点D,构造出两个直角三角形,设河两岸之间的距离约为x米,根据所设分别求出BD和AD的值,再利用AD=AB+BD得出含x的方程,解方程即可得出答案.【详解】过P点作PD垂直直线b于点D设河两岸之间的距离约为x米,即PD=x,则,可得:解得:x=54.6故答案为54.6【点睛】本题考查的是锐角三角函数的应用,解题关键是做PD垂直直线b于点D,构造出直角三角形.三、解答题(共78分)19、(1)DE与⊙O相切;理由见解析;(2)4.【分析】(1)连接OD,由D为的中点,得到,进而得到AD=CD,根据平行线的性质得到∠DOA=∠ODE=90°,求得OD⊥DE,于是得到结论;

(2)连接BD,根据四边形对角互补得到∠DAB=∠DCE,由得到∠DAC=∠DCA=45°,求得△ABD∽△CDE,根据相似三角形的性质即可得到结论.【详解】(1)解:DE与⊙O相切证:连接OD,在⊙O中∵D为的中点∴∴AD=DC∵AD=DC,点O是AC的中点∴OD⊥AC∴∠DOA=∠DOC=90°∵DE∥AC∴∠DOA=∠ODE=90°∵∠ODE=90°∴OD⊥DE∵OD⊥DE,DE经过半径OD的外端点D∴DE与⊙O相切.(2)解:连接BD∵四边形ABCD是⊙O的内接四边形∴∠DAB+∠DCB=180°又∵∠DCE+∠DCB=180°∴∠DAB=∠DCE∵AC为⊙O的直径,点D、B在⊙O上,∴∠ADC=∠ABC=90°∵,∴∠ABD=∠CBD=45°∵AD=DC,∠ADC=90°∴∠DAC=∠DCA=45°∵DE∥AC∴∠DCA=∠CDE=45°在△ABD和△CDE中∵∠DAB=∠DCE,∠ABD=∠CDE=45°∴△ABD∽△CDE∴=∴=∴AD=DC=4,CE=,AB=6,在Rt△ADC中,∠ADC=90°,AD=DC=4,∴AC==8∴⊙O的半径为4.【点睛】本题考查了直线与圆的位置关系,等腰直角三角形的性质,圆周角定理,相似三角形的判定和性质,正确的识别图形是解题的关键.20、(1)相切,理由见解析;(2)DE=.【分析】(1)连接AD,OD,根据已知条件证得OD⊥DE即可;(2)根据勾股定理计算即可.【详解】解:(1)相切,理由如下:连接AD,OD,∵AB为⊙O的直径,∴∠ADB=90°.∴AD⊥BC.∵AB=AC,∴CD=BD=BC.∵OA=OB,∴OD∥AC.∴∠ODE=∠CED.∵DE⊥AC,∴∠ODE=∠CED=90°.∴OD⊥DE.∴DE与⊙O相切.(2)由(1)知∠ADC=90°,∴在Rt△ADC中,由勾股定理得,AD==1.∵SACD=AD•CD=AC•DE,∴×1×3=×5DE.∴DE=.【点睛】本题主要考查直线与圆的位置关系,等腰三角形的性质、勾股定理等知识.正确大气层造辅助线是解题的关键.21、(1)2s(2)①证明见解析,②【解析】试题分析:(1)由当点B于点O重合的时候,BO=OD+BD=4cm,又由三角板以2cm/s的速度向右移动,即可求得三角板运动的时间;(2)①连接OF,由AC与半圆相切于点F,易得OF⊥AC,然后由∠ACB=90°,易得OF∥CE,继而证得EF平分∠AEC;②由△AFO是直角三角形,∠BAC=30°,OF=OD=3cm,可求得AF的长,由EF平分∠AEC,易证得△AFE是等腰三角形,且AF=EF,则可求得答案.试题解析:(1)∵当点B于点O重合的时候,BO=OD+BD=4cm,∴t=42=2(s);∴三角板运动的时间为:2s;(2)①证明:连接O与切点F,则OF⊥AC,∵∠ACE=90°,∴EC⊥AC,∴OF∥CE,∴∠OFE=∠CEF,∵OF=OE,∴∠OFE=∠OEF,∴∠OEF=∠CEF,即EF平分∠AEC;②由①知:OF⊥AC,∴△AFO是直角三角形,∵∠BAC=30°,OF=OD=3cm,∴tan30°=3AF,∴AF=3cm,由①知:EF平分∠AEC,∴∠AEF=∠CEF=∠AEC=30°,∴∠AEF=∠EAF,∴△AFE是等腰三角形,且AF=EF,∴EF=3cm.22、(1);(2)见解析;(3)存在,(,3),(,3),(,)【分析】(1)用待定系数法求出抛物线解析式即可;

(2)由抛物线解析式确定出抛物线的顶点坐标和与x轴的交点坐标,用勾股定理的逆定理即可;

(3)根据题意得出,然后求出,再代入求解即可.【详解】(1)∵抛物线与轴相交于点C(0,-3).

∴,

∴,

∴抛物线解析式为,

(2)△BCM是直角三角形,

理由:由(1)有,抛物线解析式为,

∴顶点为M的坐标为(-1,-4),

由(1)抛物线解析式为,

令,,

∴,

∴点A的坐标为(1,0),点B的坐标为(-3,0),

∴,,=,∵,∴,

∴△BCM是直角三角形,(3)设N点纵坐标为,根据题意得,即,∴,当N点纵坐标为3时,,解得:当N点纵坐标为-3时,,解得:(与点C重合,舍去),∴N点坐标为(,3),(,3),(,),【点睛】本题主要考查了待定系数法求抛物线解析式,勾股定理的逆定理的应用,图形面积的计算,解本题的关键是利用勾股定理的逆定理判断出△BCM是直角三角形.23、(1)3;(2)x1=,x2=;(3)x1=1+,x2=1−.【解析】(1)先根据特殊角的三角函数值、二次根式的性质、零指数幂和绝对值的意义逐项化简,再合并同类二次根式或同类项即可;(2)用直接开平方法求解即可;(3)先把-3移项,再把二次项系数化为1,两边都加1,把左边写成完全平方的形式,两边同时开平方即可.【详解】解:(1)原式=4×-2+1+2=3;(2)(2x-5)2=,2x-5=±,所以x1=,x2=;(3)解:∵2x2-4x-3=0,∴2x2-4x=3,∴x2−2x=,∴x2−2x+1=+1,∴(x−1)2=,∴x-1=±,∴x1=1+,x2=1−.【点睛】本题考查了实数的混合运算,一元二次方程的解法,熟练掌握二次方程的解法是解答本题的关键.24、(1)证明见解析;(2)BC=【分析】(1)运用切线的判定,只需要证明AB⊥BC即可,即证∠ABC=90°.连接AF,依据直径所对圆周角为90度,可以得到∠AFB=90°,依据三线合一可以得到2∠BAF=∠BAC,再结合已知条件进行等量代换可得∠BAF=∠EBC,最后运用直角三角形两锐角互余及等量代换即可.(2)依据三线合一可以得到BF的长度,继而算出∠BAF=∠EBC的正弦值,过E作EG⊥BC于点G,利用三角函数可以解除EG的值,依据垂直于同一直线的两直线平行,可得EG与AB平行,从而得到相似三角形,依据相似三角形的性质可以求出AC的长度,最后运用勾股定理求出BC的长度.【详解】(1)证明:连接AF.∵AB为直径,∴∠AFB=90°.又∵AE=AB,∴2∠BAF=∠BAC,∠FAB+∠FBA=90°.又∵∠BAC=2∠EBC,∴∠BAF=∠EBC,∴∠FAB+∠FBA=∠EBC+∠FBA=90°.∴∠ABC=90°.即AB⊥BC,∴BC与⊙O相切;(2)解:过E作EG⊥BC于点G,∵AB=AE,∠AFB=90°,∴BF=BE=×4=2,∴sin∠BAF=,又∵∠BAF=∠EBC,∴sin∠EBC=.又∵在△EGB中,∠EGB=90°,∴EG=BE•sin∠EBC=4×=1,∵EG⊥BC,AB⊥BC,∴EG∥AB,∴△CEG∽△CAB,∴.∴,∴CE=,∴AC=AE+CE

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论