2022-2023学年四川省遂宁市安居区数学九年级第一学期期末学业质量监测模拟试题含解析_第1页
2022-2023学年四川省遂宁市安居区数学九年级第一学期期末学业质量监测模拟试题含解析_第2页
2022-2023学年四川省遂宁市安居区数学九年级第一学期期末学业质量监测模拟试题含解析_第3页
2022-2023学年四川省遂宁市安居区数学九年级第一学期期末学业质量监测模拟试题含解析_第4页
2022-2023学年四川省遂宁市安居区数学九年级第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已知线段a是线段b,c的比例中项,则下列式子一定成立的是()A. B. C. D.2.如果某人沿坡度为的斜坡前进10m,那么他所在的位置比原来的位置升高了()A.6m B.8m C.10m D.12m3.在平面直角坐标系中,以原点O为位似中心,把△ABC放大得到△A1B1C1,使它们的相似比为1:2,若点A的坐标为(2,2),则它的对应点A1的坐标一定是()A.(﹣2,﹣2) B.(1,1)C.(4,4) D.(4,4)或(﹣4,﹣4)4.如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A. B. C.2 D.25.下列说法中正确的是()A.必然事件发生的概率是0B.“任意画一个等边三角形,其内角和是180°”是随机事件C.投一枚图钉,“钉尖朝上”的概率不能用列举法求得D.如果明天降水的概率是50%,那么明天有半天都在下雨6.已知函数y=ax2+bx+c(a≠0)的图象如图,下列5个结论,其中正确的结论有()①abc<0②3a+c>0③4a+2b+c<0④2a+b=0⑤b2>4acA.2 B.3 C.4 D.57.点关于原点的对称点坐标是()A. B. C. D.8.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中数字表示该位置小正方体的个数,则该几何体的左视图是()A. B. C. D.9.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是()A.4 B.5 C.6 D.610.下列命题中,①直径是圆中最长的弦;②长度相等的两条弧是等弧;③半径相等的两个圆是等圆;④半径不是弧,半圆包括它所对的直径,其中正确的个数是()A. B. C. D.11.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为弧BD,则图中阴影部分的面积是()A. B. C.- D.12.关于的一元二次方程有实数根,则满足()A. B.且 C.且 D.二、填空题(每题4分,共24分)13.已知二次函数的图象如图所示,则下列四个代数式:①,②,③;④中,其值小于的有___________(填序号).14.用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径等于_____cm.15.一人乘雪橇沿坡比1:的斜坡笔直滑下,滑下的距离s(米)与时间t(秒)间的关系为s=10t+2t2,若滑到坡底的时间为4秒,则此人下降的高度为_______.16.如图,抛物线y1=a(x+2)2+m过原点,与抛物线y2=(x﹣3)2+n交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.下列结论:①两条抛物线的对称轴距离为5;②x=0时,y2=5;③当x>3时,y1﹣y2>0;④y轴是线段BC的中垂线.正确结论是________(填写正确结论的序号).17.如图,在平面直角坐标系中,△ABC和△A′B′C′是以坐标原点O为位似中心的位似图形,且点B(3,1),B′(6,2),若点A′(5,6),则A的坐标为______.18.如图,在中,,点D、E分别在边、上,且,如果,,那么________.三、解答题(共78分)19.(8分)用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a.如:1☆3=1×32+2×1×3+1=16.(1)求(-2)☆3的值;(2)若=8,求a的值.20.(8分)如图,抛物线的对称轴是直线,且与轴相交于A,B两点(点B在点A的右侧),与轴交于点C.(1)求抛物线的解析式和A,B两点的坐标;(2)若点P是抛物线上B、C两点之间的一个动点(不与B,C重合),则是否存在一点P,使△BPC的面积最大?若存在,请求出△BPC的最大面积;若不存在,试说明理由.21.(8分)如图1,在矩形中,为边上一点,.将沿翻折得到,的延长线交边于点,过点作交于点.(1)求证:;(2)如图2,连接分别交、于点、.若,探究与之间的数量关系.22.(10分)为弘扬中华民族传统文化,某市举办了中小学生“国学经典大赛”,比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小华参加“单人组”,他从中随机抽取一个比赛项目,恰好抽中“论语”的概率是多少?(2)小明和小红组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次.则恰好小明抽中“唐诗”且小红抽中“宋词”的概率是多少?小明和小红都没有抽到“三字经”的概率是多少?请用画树状图或列表的方法进行说明.23.(10分)西安市某中学数学兴趣小组在开展“保护环境,爱护树木”的活动中,利用课外时间测量一棵古树的高,由于树的周围有水池,同学们在低于树基3.3米的一平坝内(如图).测得树顶A的仰角∠ACB=60°,沿直线BC后退6米到点D,又测得树顶A的仰角∠ADB=45°.若测角仪DE高1.3米,求这棵树的高AM.(结果保留两位小数,≈1.732)24.(10分)如图1,已知AB是⊙O的直径,AC是⊙O的弦,过O点作OF⊥AB交⊙O于点D,交AC于点E,交BC的延长线于点F,点G是EF的中点,连接CG(1)判断CG与⊙O的位置关系,并说明理由;(2)求证:2OB2=BC•BF;(3)如图2,当∠DCE=2∠F,CE=3,DG=2.5时,求DE的长.25.(12分)如图1,在中,,.(1)求边上的高的长;(2)如图2,点、分别在边、上,、在边上,当四边形是正方形时,求的长.26.某学校的学生为了对小雁塔有基本的认识,在老师的带领下对小雁塔进行了测量.测量方法如下:如图,间接测得小雁塔地部点D到地面上一点E的距离为115.2米,小雁塔的顶端为点B,且BD⊥DE,在点E处竖直放一个木棒,其顶端为C,CE=1.72米,在DE的延长线上找一点A,使A、C、B三点在同一直线上,测得AE=4.8米.求小雁塔的高度.

参考答案一、选择题(每题4分,共48分)1、B【解析】根据比例的性质列方程求解即可.解题的关键是掌握比例中项的定义,如果a:b=b:c,即b2=ac,那么b叫做a与c的比例中项.【详解】A选项,由得,b2=ac,所以b是a,c的比例中项,不符合题意;B选项,由得a2=bc,所以a是b,c的比例中项,符合题意;C选项,由,得c2=ab,所以c是a,b的比例中项,不符合题意;D选项,由得b2=ac,所以b是a,c的比例中项,不符合题意;故选B.【点睛】本题考核知识点:本题主要考查了比例线段.解题关键点:理解比例中项的意义.2、A【解析】设斜坡的铅直高度为3x,水平距离为4x,然后根据勾股定理求解即可.【详解】设斜坡的铅直高度为3x,水平距离为4x,由勾股定理得9x2+16x2=100,∴x=2,∴3x=6m.故选A.【点睛】此题主要考查坡度坡角及勾股定理的运用,需注意的是坡度是坡角的正切值,是铅直高度h和水平宽l的比,我们把斜坡面与水平面的夹角叫做坡角,若用α表示坡角,可知坡度与坡角的关系是.3、D【解析】根据如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k进行解答.【详解】∵以原点O为位似中心,相似比为:1:2,把△ABC放大得到△A1B1C1,点A的坐标为(2,2),则它的对应点A1的坐标一定为:(4,4)或(-4,-4),

故选D.【点睛】本题考查了位似变换:位似图形与坐标,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.4、D【解析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【详解】过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,AD=BD=,∴△ABC的面积为BC•AD==,S扇形BAC==,∴莱洛三角形的面积S=3×﹣2×=2π﹣2,故选D.【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.5、C【分析】根据必然事件、随机事件的概念以及概率的求解方法依次判断即可.【详解】解:A、必然事件发生的概率为1,故选项错误;B、“任意画一个等边三角形,其内角和是180°”是必然事件,故选项错误;C、投一枚图钉,“钉尖朝上”和“钉尖朝下”不是等可能事件,因此概率不能用列举法求得,选项正确;D、如果明天降水的概率是50%,是表示降水的可能性,与下雨时长没关系,故选项错误.故选:C.【点睛】本题考查了必然事件、随机事件和概率的理解,掌握概率的有关知识是解题的关键.6、B【解析】根据二次函数的图象与性质即可求出答案.【详解】①由抛物线的对称轴可知:1,∴ab<1.∵抛物线与y轴的交点可知:c>1,∴abc<1,故①正确;②∵1,∴b=﹣2a,∴由图可知x=﹣1,y<1,∴y=a﹣b+c=a+2a+c=3a+c<1,故②错误;③由(﹣1,1)关于直线x=1对称点为(3,1),(1,1)关于直线x=1对称点为(2,1),∴x=2,y>1,∴y=4a+2b+c>1,故③错误;④由②可知:2a+b=1,故④正确;⑤由图象可知:△>1,∴b2﹣4ac>1,∴b2>4ac,故⑤正确.故选B.【点睛】本题考查了二次函数的图象,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.7、B【分析】坐标系中任意一点,关于原点的对称点是,即关于原点的对称点,横纵坐标都变成相反数.【详解】根据中心对称的性质,得点关于原点的对称点的坐标为.故选B.【点睛】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.8、A【解析】左视图从左往右看,正方形的个数依次为:3,1.故选A.9、D【解析】试题解析:∵OC⊥AB,OC过圆心O点,在中,由勾股定理得:故选D.点睛:垂直于弦的直径平分弦并且平分弦所对的两条弧.10、C【分析】根据弦、弧、等弧的定义即可求解.【详解】解:①直径是圆中最长的弦,真命题;

②在等圆或同圆中,长度相等的两条弧是等弧,假命题;

③半径相等的两个圆是等圆,真命题;④半径是圆心与圆上一点之间的线段,不是弧,半圆包括它所对的直径,真命题.

故选:C.【点睛】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).11、A【分析】先根据勾股定理得到AB=,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD-S△ABC=S扇形ABD.【详解】∵∠ACB=90°,AC=BC=1,∴AB=,∴S扇形ABD=,又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△ADE+S扇形ABD−S△ABC=S扇形ABD=,故选A.【点睛】本题考查扇形面积计算,熟记扇形面积公式,采用作差法计算面积是解题的关键.12、C【分析】根据一元二次方程有实数根得到△且,解不等式求出的取值范围即可.【详解】解:关于的一元二次方程有实数根,△且,△且,且.故选:.【点睛】本题考查了一元二次方程的根的判别式△:当△,方程有两个不相等的实数根;当△,方程有两个相等的实数根;当△,方程没有实数根.二、填空题(每题4分,共24分)13、②④【分析】①根据函数图象可得的正负性,即可判断;②令,即可判断;③令,方程有两个不相等的实数根即可判断;④根据对称轴大于0小于1即可判断.【详解】①由函数图象可得、∵对称轴∴∴②令,则③令,由图像可知方程有两个不相等的实数根∴④∵对称轴∴∴综上所述,值小于的有②④.【点睛】本题考察二次函数图象与系数的关系,充分利用图象获取解题的关键信息是关键.14、1.【分析】把扇形的弧长和圆锥底面周长作为相等关系,列方程求解.【详解】设此圆锥的底面半径为r.根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:2πr,解得:r=1.故答案为1.【点睛】本题考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.15、36m【分析】求滑下的距离,设出下降的高度表示出水平宽度,利用勾股定理即可求解.【详解】解:当t=4时,s=10t+2t2=72,设此人下降的高度为x米,过斜坡顶点向地面作垂线,在直角三角形中,由勾股定理得:,解得:x=36,故答案为:36m.【点睛】本题考查了解直角三角形的应用理解坡比的意义,使用勾股定理,设未知数,列方程求解.16、①③④【分析】根据题意分别求出两个二次函数的解析式,根据函数的对称轴判定①;令x=0,求出y2的值,比较判定②;观察图象,判定③;令y=3,求出A、B、C的横坐标,然后求出AB、AC的长,判定④.【详解】∵抛物线y1=a(x+2)2+m与抛物线y2=(x﹣3)2+n的对称轴分别为x=-2,x=3,∴两条抛物线的对称轴距离为5,故①正确;∵抛物线y2=(x﹣3)2+n交于点A(1,3),∴2+n=3,即n=1;∴y2=(x﹣3)2+1,把x=0代入y2=(x﹣3)2+1得,y=≠5,②错误;由图象可知,当x>3时,y1>y2,∴x>3时,y1﹣y2>0,③正确;∵抛物线y1=a(x+2)2+m过原点和点A(1,3),∴,解得,∴.令y1=3,则,解得x1=-5,x2=1,∴AB=1-(-5)=6,∴A(1,3),B(-5,3);令y2=3,则(x﹣3)2+1=3,解得x1=5,x2=1,∴C(5,3),∴AC=5-1=4,∴BC=10,∴y轴是线段BC的中垂线,故④正确.故答案为①③④.【点睛】本题考查了二次函数的性质,主要利用了待定系数法求二次函数解析式,已知函数值求自变量的值.17、(2.5,3)【分析】利用点B(3,1),B′(6,2)即可得出位似比进而得出A的坐标.【详解】解:∵点B(3,1),B′(6,2),点A′(5,6),∴A的坐标为:(2.5,3).故答案为:(2.5,3).【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.18、【分析】根据,,得出,利用相似三角形的性质解答即可.【详解】∵,,∴,∴,即,∴,∵,∴,故答案为【点睛】本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.三、解答题(共78分)19、(1)-32;(2)a=1.【解析】分析:(1)原式利用题中的新定义化简,计算即可得到结果;(2)已知等式利用题中的新定义化简,即可求出a的值.详解:(1)(-2)☆3=-2×32+2×(-2)×3+(-2)=-32;(2)==8a+8=8,解得:a=1.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20、(1),点A的坐标为(-2,0),点B的坐标为(8,0);(2)当=4时,△PBC的面积最大,最大面积是1.【分析】(1)由抛物线的对称轴是直线x=3,解出a的值,即可求得抛物线解析式,在令其y值为0,解一元二次方程即可求出A和B的坐标;

(2)易求点C的坐标为(0,4),设直线BC的解析式为y=kx+b(k≠0),将B(8,0),C(0,4)代入y=kx+b,解出k和b的值,即得直线BC的解析式;设点P的坐标为(,),过点P作PD∥y轴,交直线BC于点D,则点D的坐标为(,),利用面积公式得出关于x的二次函数,从而求得其最值.【详解】(1)∵抛物线的对称轴是直线,∴,解得,∴抛物线的解析式为:,当时,即,解之得:,,∴点A的坐标为(-2,0),点B的坐标为(8,0),故答案为:,点A的坐标为(-2,0),点B的坐标为(8,0);(2)当时,∴点C的坐标为(0,4)设直线BC的解析式为,将点B(8,0)和点C(0,4)的坐标代入得:,解之得:,∴直线BC的解析式为,假设存在,设点P的坐标为(,),过点P作PD∥轴,交直线BC于点D,交轴于点E,则点D的坐标为(,),如图所示,PD=-()=∴S△PBC=S△PDC+S△PDB====∵-1<0∴当=4时,△PBC的面积最大,最大面积是1.【点睛】本题属于二次函数综合题,综合考查了待定系数法求解析式,一次函数的应用,三角形的面积,解题的关键是学会构建二次函数解决最值问题.21、(1)详见解析;(2).【分析】(1)过点作于点,根据矩形的判定可得四边形和四边形是矩形,从而得出,,,然后证出,列出比例式,再利用等量代换即可得出结论;(2)设,则,先证出,可得,然后证出,可得,即可求出EF和AC的关系,从而求出与之间的数量关系.【详解】(1)证明:过点作于点,如图1所示:则四边形和四边形是矩形,∴,,,∵,∴,∴,∴,∴,∴,即;(2)解:∵,∴设,则,由(1)可知:,,∵,∴,∴,,∵,∴,∴,∴,根据翻折的性质可得∵DC∥AB,∠APB=90°∴+∠BPM=90°,∠PAM+∠PBM=90°∴∠BPM=∠PBM∴MP=MA,MP=MB∴,∴,∵,∴,∴,∴,∴,∴.【点睛】此题考查的是矩形的性质、相似三角形的判定及性质和折叠的性质,掌握矩形的性质、相似三角形的判定及性质和折叠的性质是解决此题的关键.22、(2);(2)见解析.【分析】(1)直接利用概率公式求解即可;(2)先画树状图展示所有12种等可能的结果数,再找出恰好小明抽中“唐诗”且小红抽中“宋词”的结果数及小明和小红都没有抽到“三字经”的结果数,然后根据概率公式求解.【详解】解:(1)他从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=.(2)画树状图为:共有12种等可能的结果数;所以恰好小明抽中“唐诗”且小红抽中“宋词”的概率=小明和小红都没有抽到“三字经”的概率==【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.23、12.20米【分析】可在Rt△ABD和Rt△ABC中,利用已知角的三角函数,用AB表示出BD、BC,根据CD=BD﹣BC=6即可求出AB的长;已知HM、DE的长,易求得BM的值,由AM=AB﹣BM即可求出树的高度.【详解】设AB=x米.Rt△ABD中,∠ADB=45°,BD=AB=x米.Rt△ACB中,∠ACB=60°,BC=AB÷tan60°x米.CD=BD﹣BC=(1)x=6,解得:x=9+3,即AB=(9+3)米.∵BM=HM﹣DE=3.3﹣1.3=2,∴AM=AB﹣BM=7+312.20(米).答:这棵树高12.20米.【点睛】本题考查了解直角三角形的应用,首先构造直角三角形,再借助角边关系、三角函数的定义解题.24、(1)CG与⊙O相切,理由见解析;(1)见解析;(3)DE=1【解析】(1)连接CE,由AB是直径知△ECF是直角三角形,结合G为EF中点知∠AEO=∠GEC=∠GCE,再由OA=OC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论