2022-2023学年陕西省宝鸡市高新区数学九上期末监测模拟试题含解析_第1页
2022-2023学年陕西省宝鸡市高新区数学九上期末监测模拟试题含解析_第2页
2022-2023学年陕西省宝鸡市高新区数学九上期末监测模拟试题含解析_第3页
2022-2023学年陕西省宝鸡市高新区数学九上期末监测模拟试题含解析_第4页
2022-2023学年陕西省宝鸡市高新区数学九上期末监测模拟试题含解析_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,有一块直角三角形余料ABC,∠BAC=90°,D是AC的中点,现从中切出一条矩形纸条DEFG,其中E,F在BC上,点G在AB上,若BF=4.5cm,CE=2cm,则纸条GD的长为()A.3cm B.cm C.cm D.cm2.已知反比例函数的图象经过点,则这个函数的图象位于()A.第二、三象限 B.第一、三象限 C.第三、四象限 D.第二、四象限3.关于的一元二次方程有两个相等的实数根,则的值为()A. B. C. D.4.赵州桥的桥拱可以用抛物线的一部分表示,函数关系为,当水面宽度AB为20m时,水面与桥拱顶的高度DO等于()A.2m B.4m C.10m D.16m5.如图,在中,是边上一点,延长交的延长线于点,若,则等于()A. B. C. D.6.下列函数是二次函数的是()A.y=2x﹣3 B.y= C.y=(x﹣1)(x+3) D.7.若一元二次方程有两个相等的实数根,则m的值是()A.2 B. C. D.8.如图是二次函数y=ax1+bx+c(a≠0)图象的一部分,对称轴是直线x=﹣1.关于下列结论:①ab<0;②b1﹣4ac>0;③9a﹣3b+c>0;④b﹣4a=0;⑤方程ax1+bx=0的两个根为x1=0,x1=﹣4,其中正确的结论有()A.1个 B.3个 C.4个 D.5个9.如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(1,0),对称轴是直线x=-1,则ax2+bx+c=0的解是()A.x1=-3,x2=1 B.x1=3,x2=1 C.x=-3 D.x=-210.下列关于x的方程中,一定是一元二次方程的为()A.ax2+bx+c=0 B.x2﹣2=(x+3)2C.x2+﹣5=0 D.x2=011.顺次连接平行四边形四边的中点所得的四边形是()A.矩形 B.菱形 C.正方形 D.平行四边形12.如图,在矩形中,.将向内翻折,点落在上,记为,折痕为.若将沿向内翻折,点恰好落在上,记为,则的长为()A. B. C. D.二、填空题(每题4分,共24分)13.光线从空气射入水中会发生折射现象,发生折射时,满足的折射定律如图①所示:折射率(代表入射角,代表折射角).小明为了观察光线的折射现象,设计了图②所示的实验;通过细管可以看见水底的物块,但从细管穿过的直铁丝,却碰不上物块,图③是实验的示意图,点A,C,B在同一直线上,测得,则光线从空射入水中的折射率n等于________.14.如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°.把△ABC绕点A按顺时针方向旋转60°后得到△AB′C′,若AB=4,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是_____.(结果保留π).15.如图,△OAB的顶点A的坐标为(3,),B的坐标为(4,0);把△OAB沿x轴向右平移得到△CDE,如果D的坐标为(6,),那么OE的长为_____.16.如图,是⊙的直径,,点、在⊙上,、的延长线交于点,且,,有以下结论:①;②劣弧的长为;③点为的中点;④平分,以上结论一定正确的是______.17.方程的解为________.18.如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(3a,a)是反比例函数(k>0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为▲.三、解答题(共78分)19.(8分)对于平面直角坐标系中的点和半径为1的,定义如下:①点的“派生点”为;②若上存在两个点,使得,则称点为的“伴侣点”.应用:已知点(1)点的派生点坐标为________;在点中,的“伴侣点”是________;(2)过点作直线交轴正半轴于点,使,若直线上的点是的“伴侣点”,求的取值范围;(3)点的派生点在直线,求点与上任意一点距离的最小值.20.(8分)如图,为测量一条河的宽度,某学习小组在河南岸的点A测得河北岸的树C在点A的北偏东60°方向,然后向东走10米到达B点,测得树C在点B的北偏东30°方向,试根据学习小组的测量数据计算河宽.21.(8分)如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形,若能,求出BE的长;若不能,请说明理由;(3)求当线段AM最短时的长度22.(10分)在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F(1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;(2)如图2,①求证:BP=BF;②当AD=25,且AE<DE时,求cos∠PCB的值;③当BP=9时,求BE•EF的值.23.(10分)如图,中,,,为内部一点,.求证:.24.(10分)某教师为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额进行统计调查,并绘制了统计表及统计图,如图所示.(1)这50名学生每人一周内的零花钱数额的平均数是_______元/人;(2)如果把全班50名学生每人一周内的零花钱按照不同数额人数绘制成扇形统计图,则一周内的零花钱数额为5元的人数所占的圆心角度数是_____度;(3)一周内的零花钱数额为20元的有5人,其中有2名是女生,3名是男生,现从这5人中选2名进行个别教育指导,请用画树状图或列表法求出刚好选中2名是一男一女的概率.25.(12分)已知,在平面直角坐标系中,二次函数的图象与轴交于点,与轴交于点,点的坐标为,点的坐标为.

(1)如图1,分别求的值;(2)如图2,点为第一象限的抛物线上一点,连接并延长交抛物线于点,,求点的坐标;(3)在(2)的条件下,点为第一象限的抛物线上一点,过点作轴于点,连接、,点为第二象限的抛物线上一点,且点与点关于抛物线的对称轴对称,连接,设,,点为线段上一点,点为第三象限的抛物线上一点,分别连接,满足,,过点作的平行线,交轴于点,求直线的解析式.26.如图,△ABC在坐标平面内,三个顶点的坐标分别为A(0,4),B(2,2),C(4,6)(正方形网格中,每个小正方形的边长为1)(1)画出△ABC向下平移5个单位得到的△A1B1C1,并写出点B1的坐标;(2)以点O为位似中心,在第三象限画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为1:2,直接写出点C2的坐标和△A2B2C2的面积.

参考答案一、选择题(每题4分,共48分)1、C【详解】∵四边形DEFG是矩形,∴GD∥EF,GD=EF,∵D是AC的中点,∴GD是△ABC的中位线,∴,∴,解得:GD=.故选D.2、D【分析】首先将点P的坐标代入确定函数的表达式,再根据k>0时,函数图象位于第一、三象限;k<0时函数图象位于第二、四象限解答即可.【详解】解:∵反比例函数的图象经过点P(-2,1),

∴k=-2<0,

∴函数图象位于第二,四象限.故选:D.【点睛】本题考查了反比例函数图象上的点以及反比例函数图象的性质,掌握基本概念和性质是解题的关键.3、A【分析】根据方程有两个相等的实数根列方程求解即可.【详解】由题意得∆=0,∴4-4k=0,解得k=1,故选:A.【点睛】此题考查了一元二次方程的根的情况求未知数的值,正确掌握一元二次方程的根的三种情况:方程有两个不相等的实数根时∆>0,方程有两个相等的实数根时∆=0,方程没有实数根时∆<0.4、B【分析】根据题意,水面宽度AB为20则B点的横坐标为10,利用B点是函数为图象上的点即可求解y的值即DO【详解】根据题意B的横坐标为10,把x=10代入,得y=﹣4,∴A(﹣10,﹣4),B(10,﹣4),即水面与桥拱顶的高度DO等于4m.故选B.【点睛】本题考查了点的坐标及二次函数的实际应用.5、B【分析】根据平行四边形的性质可得出AB=CD,,得出,再利用相似三角形的性质得出对应线段成比例,即,从而可得解.【详解】解:四边形是平行四边形,,,,且,,故选:.【点睛】本题考查的知识点有平行四边形的性质,相似三角形的性质,综合运用各知识点能够更好的解决问题.6、C【分析】根据二次函数的定义作出判断.【详解】解:A、该函数属于一次函数,故本选项错误;B、该函数未知数在分母位置,不符合二次函数的定义,故本选项错误;C、该函数符合二次函数的定义,故本选项正确;D、该函数只有一个变量不符合二次函数的定义,故本选项错误;故选:C.【点睛】此题考查的是二次函数的判断,掌握二次函数的定义是解决此题的关键.7、D【分析】根据一元二次方程根的判别式,即可得到答案【详解】解:∵一元二次方程有两个相等的实数根,∴,解得:;故选择:D.【点睛】本题考查了一元二次方程根的判别式,解题的关键是熟练掌握利用根的判别式求参数的值.8、C【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】解:∵抛物线开口向下,∴a<0,∵,∴b=4a,ab>0,∴b﹣4a=0,∴①错误,④正确,∵抛物线与x轴交于﹣4,0处两点,∴b1﹣4ac>0,方程ax1+bx=0的两个根为x1=0,x1=﹣4,∴②⑤正确,∵当x=﹣3时y>0,即9a﹣3b+c>0,∴③正确,故正确的有②③④⑤.故选:C.【点睛】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求1a与b的关系,以及二次函数与方程之间的转换,根的判别式以及特殊值的熟练运用9、A【解析】已知抛物线y=ax2+bx+c与x轴的一个交点为A(1,0),对称轴是直线x=-1,由此可得抛物线与x轴的另一个交点坐标为(-3,0),所以方程ax2+bx+c=0的解是x1=-3,x2=1,故选A.10、D【解析】根据一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是1.逐一判断即可.【详解】解:A、当a=0时,ax1+bx+c=0,不是一元二次方程;B、x1﹣1=(x+3)1整理得,6x+11=0,不是一元二次方程;C、,不是整式方程,不是一元二次方程;D、x1=0,是一元二次方程;故选:D.【点睛】本题主要考查一元二次方程的定义,正确把握一元二次方程的定义是解题关键.11、D【解析】试题分析:顺次连接四边形四边的中点所得的四边形是平行四边形,如果原四边形的对角线互相垂直,那么所得的四边形是矩形,如果原四边形的对角线相等,那么所得的四边形是菱形,如果原四边形的对角线相等且互相垂直,那么所得的四边形是正方形,因为平行四边形的对角线不一定相等或互相垂直,因此得平行四边形.故选D.考点:中点四边形的形状判断.12、B【分析】首先根据矩形和翻折的性质得出△AED≌△A'ED,△A'BE≌△A'B'E,∠A'B'E=∠B=∠A'B'D=90°,∠AED=∠A'ED,∠A'EB=∠A'EB',BE=B'E,进而得出∠AED=∠A'ED=∠A'EB=60°,∠ADE=∠A'DE=∠A'DC=30°,判定△DB'A'≌△DCA',DC=DB',得出AE,设AB=DC=x,利用勾股定理构建方程,即可得解.【详解】∵四边形ABCD为矩形,∴∠ADC=∠C=∠B=90°,AB=DC,由翻折知,△AED≌△A'ED,△A'BE≌△A'B'E,∠A'B'E=∠B=∠A'B'D=90°,∴∠AED=∠A'ED,∠A'EB=∠A'EB',BE=B'E,∴∠AED=∠A'ED=∠A'EB=×180°=60°,∴∠ADE=90°﹣∠AED=30°,∠A'DE=90°﹣∠A'EB=30°,∴∠ADE=∠A'DE=∠A'DC=30°,又∵∠C=∠A'B'D=90°,DA'=DA',∴△DB'A'≌△DCA'(AAS),∴DC=DB',在Rt△AED中,∠ADE=30°,AD=2,∴AE=,设AB=DC=x,则BE=B'E=x﹣∵AE2+AD2=DE2,∴()2+22=(x+x﹣)2,解得,x1=(负值舍去),x2=,故答案为B.【点睛】本题考查了矩形的性质,轴对称的性质等,解题关键是通过轴对称的性质证明∠AED=∠A'ED=∠A'EB=60°.二、填空题(每题4分,共24分)13、【分析】过D作GH⊥AB于点H,利用勾股定理求出BD和CD,再分别求出入射角∠PDG和折射角∠CDH的正弦值,根据公式可得到折射率.【详解】如图,过D作GH⊥AB于点H,在Rt△BDF中,BF=12cm,DF=16cm∴BD=cm∵四边形BFDH为矩形,∴BH=DF=16cm,DH=BF=12cm又∵BC=7cm∴CH=BH-BC=9cm∴CD=cm∵入射角为∠PDG,sin∠PDG=sin∠BDH=折射角为∠CDH,sin∠CDH=∴折射率故答案为:.【点睛】本题主要考查了勾股定理和求正弦值,解题的关键是找出图中的入射角与折射角,并计算出正弦值.14、2π.【分析】由题意根据阴影部分的面积是:扇形BAB′的面积+S△AB′C′-S△ABC-扇形CAC′的面积,分别求得:扇形BAB′的面积和S△AB′C′,S△ABC以及扇形CAC′的面积,进而分析即可求解.【详解】解:扇形BAB′的面积是:,在直角△ABC中,,.扇形CAC′的面积是:,则阴影部分的面积是:扇形BAB′的面积+-扇形CAC′的面积=.故答案为:2π.【点睛】本题考查扇形的面积的计算,正确理解阴影部分的面积是:扇形BAB′的面积+-扇形CAC′的面积是解题的关键.15、7【分析】根据平移的性质得到AD=BE=6﹣3=3,由B的坐标为(4,0),得到OB=4,根据OE=OB+BE即可得答案.【详解】∵点A的坐标为(3,),点D的坐标为(6,),把△OAB沿x轴向右平移得到△CDE,∴AD=BE=6﹣3=3,∵B的坐标为(4,0),∴OB=4,∴OE=OB+BE=7,故答案为:7【点睛】本题考查图形平移的性质,平移不改变图形的形状和大小;图形经过平移,对应线段相等,对应角相等,对应点所连的线段相等.16、①②③【分析】①根据圆内接四边形的外角等于其内对角可得∠CBE=∠ADE,根据等边对等角得出∠CBE=∠E,等量代换即可得到∠ADE=∠E;②根据圆内接四边形的外角等于其内对角可得∠A=∠BCE=70,根据等边对等角以及三角形内角和定理求出∠AOB=40,再根据弧长公式计算得出劣弧的长;③根据圆周角定理得出∠ACD=90,即AC⊥DE,根据等角对等边得出AD=AE,根据等腰三角形三线合一的性质得出∠DAC=∠EAC,再根据圆周角定理得到点C为的中点;④由DB⊥AE,而∠A≠∠E,得出BD不平分∠ADE.【详解】①∵ABCD是⊙O的内接四边形,∴∠CBE=∠ADE,∵CB=CE,∴∠CBE=∠E,∴∠ADE=∠E,故①正确;②∵∠A=∠BCE=70,∴∠AOB=40,∴劣弧的长=,故②正确;③∵AD是⊙O的直径,∴∠ACD=90,即AC⊥DE,∵∠ADE=∠E,∴AD=AE,∴∠DAC=∠EAC,∴点C为的中点,故③正确;④∵DB⊥AE,而∠A≠∠E,∴BD不平分∠ADE,故④错误.所以正确结论是①②③.故答案为①②③.【点睛】本题考查了圆内接四边形的性质,圆周角定理,弧长的计算,等腰三角形的判定与性质,三角形内角和定理,掌握相关性质及公式是解题的关键.17、【解析】这个式子先移项,变成x2=9,从而把问题转化为求9的平方根.【详解】解:移项得x2=9,

解得x=±1.

故答案为.【点睛】本题考查了解一元二次方程-直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.注意:

(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.

(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.18、.【解析】待定系数法,曲线上点的坐标与方程的关系,反比例函数图象的对称性,正方形的性质.【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的,设小正方形的边长为b,图中阴影部分的面积等于9可求出b的值,从而可得出直线AB的表达式,再根据点P(2a,a)在直线AB上可求出a的值,从而得出反比例函数的解析式:∵反比例函数的图象关于原点对称,∴阴影部分的面积和正好为小正方形的面积.设正方形的边长为b,则b2=9,解得b=3.∵正方形的中心在原点O,∴直线AB的解析式为:x=2.∵点P(2a,a)在直线AB上,∴2a=2,解得a=3.∴P(2,3).∵点P在反比例函数(k>0)的图象上,∴k=2×3=2.∴此反比例函数的解析式为:.三、解答题(共78分)19、(1)(1,0),E、D、;(2);(3)【分析】(1)根据定义即可得到点的坐标,过点E作的切线EM,连接OM,利用三角函数求出∠MEO=30°,即可得到点E是的“伴侣点”;根据点F、D、的坐标得到线段长度与线段OE比较即可判定是否是的“伴侣点”;(2)根据题意求出,∠OGF=60°,由点是的“伴侣点”,过点P作的切线PA、PB,连接OP,OB,证明△OPG是等边三角形,得到点P应在线段PG上,过点P作PH⊥x轴于H,求出点P的横坐标是-,由此即可得到点P的横坐标m的取值范围;(3)设点(x,-2x+6),P(m,n),根据派生点的定义得到3m+n=6,由此得到点P在直线y=-3x+6上,设直线y=-3x+6与x轴交于点A,与y轴交于点B,过点O作OH⊥AB于H,交于点C,求出AB的长,再根据面积公式求出OH即可得到答案.【详解】(1)∵,∴点的派生点坐标为(1,0),∵E(0,-2),∴OE=2,过点E作的切线EM,连接OM,∵OM=1,OE=2,∠OME=90°,∴sin∠MEO=,∴∠MEO=30°,而在的左侧也有一个切点,使得组成的角等于30°,∴点E是的“伴侣点”;∵,∴OF=>OE,∴点F不可能是的“伴侣点”;∵,(1,0),,,∴点D、是的“伴侣点”,∴的“伴侣点”有:E、D、,故答案为:(1,0),E、D、;(2)如图,直线l交y轴于点G,∵,∴,∠OGF=60°∵直线上的点是的“伴侣点”,∴过点P作的切线PA、PB,且∠APB=60°,连接OP,OB,∴∠BOP=30°,∵∠OBP=90°,OB=1,∴OP=2=OG,∴△OPG是等边三角形,∴若点P是的“伴侣点”,则点P应在线段PG上,过点P作PH⊥x轴于H,∵∠POH=90°-60°=30°,OP=2,∴PH=1,∴OH=,即点P的横坐标是-,∴当直线上的点是的“伴侣点”时的取值范围是;(3)设点(x,-2x+6),P(m,n),根据题意得:m+n=x,m-n=-2x+6,∴3m+n=6,即n=-3m+6,∴点P坐标为(m,-3m+6),∴点P在直线y=-3x+6上,设直线y=-3x+6与x轴交于点A,与y轴交于点B,过点O作OH⊥AB于H,交于点C,如图,则A(2,0),B(0,6),∴,∴,∴,∴,即点P与上任意一点距离的最小值为.【点睛】此题考查圆的性质,切线长定理,切线的性质,等腰三角形的性质,锐角三角函数,特殊角的三角函数值,勾股定理,正确掌握各知识点是解题的关键.20、米【分析】如图(见解析),过点A作于点E,过B作于点F,设河宽为x米,则,在和中分别利用和建立x的等式,求解即可.【详解】过点A作于点E,过B作于点F设河宽为x米,则依题意得在中,,即解得:则在中,,即解得:(米)答:根据学习小组的测量数据计算出河宽为米.【点睛】本题考查了锐角三角函数中的正切的实际应用,依据题意构造出直角三角形是解题关键.21、(1)证明见解析;(2)BE=1或;(3).【解析】试题分析:(1)由AB=AC,根据等边对等角,可得∠B=∠C,又由△ABC≌△DEF与三角形外角的性质,易证得∠CEM=∠BAE,则可证得:△ABE∽△ECM;(2)首先由∠AEF=∠B=∠C,且∠AME>∠C,可得AE≠AM,然后分别从AE=EM与AM=EM去分析,注意利用全等三角形与相似三角形的性质求解即可求得答案;(3)先设BE=x,由△ABE∽△ECM,根据相似三角形的对应边成比例,易得CM=-(x-3)2+,利用二次函数的性质,继而求得线段AM的最小值.试题解析:(1)证明:∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;(2)解:∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF,∴AE≠AM;当AE=EM时,则△ABE≌△ECM,∴CE=AB=5,∴BE=BC-EC=6-5=1,当AM=EM时,则∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,又∵∠C=∠C,∴△CAE∽△CBA,∴∴CE=∴BE=6-∴BE=1或(3)解:设BE=x,又∵△ABE∽△ECM,∴即:∴CM=∴AM=-5-CM=∴当x=3时,AM最短为.考点:相似形综合题.22、(1)证明见解析;(2)①证明见解析;②;③1.【解析】(1)先判断出∠A=∠D=90°,AB=DC再判断出AE=DE,即可得出结论;(2)①利用折叠的性质,得出∠PGC=∠PBC=90°,∠BPC=∠GPC,进而判断出∠GPF=∠PFB即可得出结论;②判断出△ABE∽△DEC,得出比例式建立方程求解即可得出AE=9,DE=16,再判断出△ECF∽△GCP,进而求出PC,即可得出结论;③判断出△GEF∽△EAB,即可得出结论.【详解】(1)在矩形ABCD中,∠A=∠D=90°,AB=DC,∵E是AD中点,∴AE=DE,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS);(2)①在矩形ABCD,∠ABC=90°,∵△BPC沿PC折叠得到△GPC,∴∠PGC=∠PBC=90°,∠BPC=∠GPC,∵BE⊥CG,∴BE∥PG,∴∠GPF=∠PFB,∴∠BPF=∠BFP,∴BP=BF;②当AD=25时,∵∠BEC=90°,∴∠AEB+∠CED=90°,∵∠AEB+∠ABE=90°,∴∠CED=∠ABE,∵∠A=∠D=90°,∴△ABE∽△DEC,∴,设AE=x,∴DE=25﹣x,∴,∴x=9或x=16,∵AE<DE,∴AE=9,DE=16,∴CE=20,BE=15,由折叠得,BP=PG,∴BP=BF=PG,∵BE∥PG,∴△ECF∽△GCP,∴,设BP=BF=PG=y,∴,∴y=,∴BP=,在Rt△PBC中,PC=,cos∠PCB==;③如图,连接FG,∵∠GEF=∠BAE=90°,∵BF∥PG,BF=PG=BP,∴▱BPGF是菱形,∴BP∥GF,∴∠GFE=∠ABE,∴△GEF∽△EAB,∴,∴BE•EF=AB•GF=12×9=1.【点睛】此题是四边形综合题,主要考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,折叠的性质,利用方程的思想解决问题是解本题的关键.23、详见解析【分析】利用等式的性质判断出∠PBC=∠PAB,即可得出结论;【详解】解:,,又,,,又,.【点睛】此题主要考查了相似三角形的判定和性质,等腰直角三角形的性质,判断出∠PBC=∠PAB是解本题的关键.24、(1)12;(2)72;(3).【分析】(1)根据加权平均数的计算公式计算即可;(2)用样本中零花钱数额为5元的人数所占比例乘以360°即可;(3)通过列表,求出所有情况及符合题意的情况有多少种,根据概率的计算公式得出答案即可.【详解】解:(1)平均数是(元);故答案为:12;(2)一周内的零花钱数额为5元的人数所占的圆心角度数为:;故答案为:72;(3)表格如下:从这5人中选2名共20种情况,刚好选中2名是一男一女有12种情况,所以刚好选中2名是一男一女的概率为,故答案为.【点睛】本题考查加权平均数、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论