版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.某市计划争取“全面改薄”专项资金120000000元,用于改造农村义务教育薄弱学校100所数据120000000用科学记数法表示为()A.12×108 B.1.2×108 C.1.2×109 D.0.12×1092.已知关于的一元二次方程的一个根是2,则的值为()A.-1 B.1 C.-2 D.23.如图,在平面直角坐标系中,点O为坐标原点,平行四边形OABC的顶点A在反比例函数上,顶点B在反比例函数上,点C在x轴的正半轴上,则平行四边形OABC的面积是()A. B. C.4 D.64.一元二次方程的两个根为,则的值是()A.10 B.9 C.8 D.75.已知下列命题:①若,则;②当时,若,则;③直角三角形中斜边上的中线等于斜边的一半;④矩形的两条对角线相等.其中原命题与逆命题均为真命题的个数是()A.个 B.个 C.个 D.个6.“黄金分割”是一条举世公认的美学定律.例如在摄影中,人们常依据黄金分割进行构图,使画面整体和谐.目前,照相机和手机自带的九宫格就是黄金分割的简化版.要拍摄草坪上的小狗,按照黄金分割的原则,应该使小狗置于画面中的位置()A.① B.② C.③ D.④7.菱形ABCD的一条对角线长为6,边AB的长是方程x2﹣7x+12=0的一个根,则菱形ABCD的周长为()A.16 B.12 C.16或12 D.248.如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是()A.A B.B C.C D.D9.如图,若AB是⊙0的直径,CD是⊙O的弦,∠ABD=56°,则∠BCD是()A.34° B.44° C.54° D.56°10.如图是某体育馆内的颁奖台,其左视图是()A. B.C. D.11.如图,菱形ABCD中,∠B=70°,AB=3,以AD为直径的⊙O交CD于点E,则弧DE的长为()A.π B.π C.π D.π12.如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,使点P′在△ABC内,已知∠AP′B=135°,若连接P′C,P′A:P′C=1:4,则P′A:P′B=()A.1:4 B.1:5 C.2: D.1:二、填空题(每题4分,共24分)13.飞机着陆后滑行的距离(单位:)关于滑行的时间(单位:)的函数解析式是,飞机着陆后滑行______才能停下来.14.如图,△ABC周长为20cm,BC=6cm,圆O是△ABC的内切圆,圆O的切线MN与AB、CA相交于点M、N,则△AMN的周长为________cm.15.如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船与观测站之间的距离(即OB的长)为_____km.16.在中,,点在直线上,,点为边的中点,连接,射线交于点,则的值为________.17.150°的圆心角所对的弧长是5πcm,则此弧所在圆的半径是______cm.18.如图,半径为,正方形内接于,点在上运动,连接,作,垂足为,连接.则长的最小值为________.三、解答题(共78分)19.(8分)解方程(1)2x2﹣6x﹣1=0(2)(x+5)2=6(x+5)20.(8分)如果一个直角三角形的两条直角边的长相差2cm,面积是24,那么这个三角形的两条直角边分别是多少?21.(8分)如图,已知△ABC为和点A'.(1)以点A'为顶点求作△A'B'C',使△A'B'C'∽△ABC,S△A'B'C'=4S△ABC;(尺规作图,保留作图痕迹,不写作法)(2)设D、E、F分别是△ABC三边AB、BC、AC的中点,D'、E'、F'分别是你所作的△A'B'C'三边A'B'、B'C'、A'C'的中点,求证:△DEF∽△D'E'F'.22.(10分)2018年高一新生开始,某省全面启动高考综合改革,实行“3+1+2”的高考选考方案.“3”是指语文、数学、外语三科必考;“1”是指从物理、历史两科中任选一科参加选考,“2”是指从政治、化学、地理、生物四科中任选两科参加选考(1)“1+2”的选考方案共有多少种?请直接写出所有可能的选法;(选法与顺序无关,例如:“物、政、化”与“物、化、政”属于同一种选法)(2)高一学生小明和小杰将参加新高考,他们酷爱历史和生物,两人约定必选历史和生物.他们还需要从政治、化学、地理三科中选一科参考,若这三科被选中的机会均等,请用列表或画树状图的方法,求出他们恰好都选中政治的概率.23.(10分)如图所示,是的直径,其半径为,扇形的面积为.(1)求的度数;(2)求的长度.24.(10分)如图,已知,相交于点为上一点,且.(1)求证:;(2)求证:.25.(12分)如图,在△ABC中,∠A为钝角,AB=25,AC=39,,求tanC和BC的长.
26.如图,已知抛物线(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C,且OC=OB.(1)求此抛物线的解析式;(2)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求出此时点E的坐标;(3)点P在抛物线的对称轴上,若线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,求点P的坐标.
参考答案一、选择题(每题4分,共48分)1、B【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】120000000=1.2×108,故选:B.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2、D【分析】把代入原方程得到关于的一元一次方程,解方程即可.【详解】解:把代入原方程得:故选D.【点睛】本题考查的是一元二次方程的解的含义,掌握方程解的含义是解题的关键.3、C【分析】作BD⊥x轴于D,延长BA交y轴于E,然后根据平行四边形的性质和反比例函数系数k的几何意义即可求得答案.【详解】解:如图作BD⊥x轴于D,延长BA交y轴于E,∵四边形OABC是平行四边形,∴AB∥OC,OA=BC,∴BE⊥y轴,∴OE=BD,∴Rt△AOE≌Rt△CBD(HL),根据反比例函数系数k的几何意义得,S矩形BDOE=5,S△AOE=,∴平行四边形OABC的面积,故选:C.【点睛】本题考查了反比例函数的比例系数k的几何意义、平行四边形的性质等,有一定的综合性4、D【分析】利用方程根的定义可求得,再利用根与系数的关系即可求解.【详解】为一元二次方程的根,,.根据题意得,,.故选:D.【点睛】本题主要考查了一元二次方程的解,根与系数的关系以及求代数式的值,熟练掌握根与系数的关系,是解题的关键.5、B【分析】先写出每个命题的逆命题,再分别根据绝对值的意义、不等式的性质、直角三角形的性质和判定、矩形的性质和判定依次对各命题进行判断即可.【详解】解:①的原命题:若,则,是假命题;①的逆命题:若,则,是真题,故①不符合题意;②的原命题:当时,若,则,根据不等式的基本性质知该命题是真命题;②的逆命题:当时,若,则,也是真命题,故②符合题意;③的原命题:直角三角形中斜边上的中线等于斜边的一半,是真命题;③的逆命题:一边上的中线等于这边的一半的三角形是直角三角形,也是真命题,故③符合题意;④的原命题:矩形的两条对角线相等,是真命题;④的逆命题:对角线相等的四边形是矩形,是假命题,故④不符合题意.综上,原命题与逆命题均为真命题的是②③,共个,故选B.【点睛】本题考查了命题和定理、实数的绝对值、不等式的性质、直角三角形的性质和判定、矩形的性质和判定等知识,属于基本题目,熟练掌握以上基本知识是解题的关键.6、B【解析】黄金分割是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值约为0.618,观察图中的位置可知应该使小狗置于画面中②的位置,故选B.7、A【分析】先利用因式分解法解方程得到x1=3,x2=4,再根据菱形的性质可确定边AB的长是4,然后计算菱形的周长.【详解】(x﹣3)(x﹣4)=0,x﹣3=0或x﹣4=0,所以x1=3,x2=4,∵菱形ABCD的一条对角线长为6,∴边AB的长是4,∴菱形ABCD的周长为1.故选A.【点睛】本题考查菱形的性质和解一元二次方程-因式分解法,解题的关键是掌握菱形的性质和解一元二次方程-因式分解法.8、C【解析】∵△ABC是正三角形,∴∠B=∠C=60°,∵∠BPD+∠APD=∠C+∠CAP,∠APD=60°,∴∠BPD=∠CAP,∴△BPD∽△CAP,∴BP:AC=BD:PC,∵正△ABC的边长为4,BP=x,BD=y,∴x:4=y:(4−x),∴y=−x2+x.故选C.点睛:函数图象是典型的数形结合,图象应用信息广泛,通过看图象获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题能力、解决问题能力.用图象解决问题时,要理清图象的含义即会识图.9、A【分析】根据圆周角定理由AB是⊙O的直径可得∠ADB=90°,再根据互余关系可得∠A=90°-∠∠ABD=34°,最后根据圆周角定理可求解.【详解】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=56°,∴∠A=90°-∠ABD=34°,∴∠BCD=∠A=34°,故答案选A.【点睛】本题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对圆心角的一半.解题的关键是正确利用图中各角之间的关系进行计算.10、D【分析】找到从左面看所得到的图形即可.【详解】解:从左边看去是上下两个矩形,下面的比较高.故选D.【点睛】本题考查了简单组合体的三视图,解题的关键是掌握三视图的观察方法.11、A【分析】连接OE,由菱形的性质得出∠D=∠B=70°,AD=AB=3,得出OA=OD=1.5,由等腰三角形的性质和三角形内角和定理求出∠DOE=40°,再由弧长公式即可得出答案.【详解】连接OE,如图所示:∵四边形ABCD是菱形,∴∠D=∠B=70°,AD=AB=3,∴OA=OD=1.5,∵OD=OE,∴∠OED=∠D=70°,∴∠DOE=180°﹣2×70°=40°,∴的长=.故选:A.【点睛】此题考查菱形的性质、弧长计算,根据菱形得到需要的边长及角度即可代入公式计算弧长.12、C【分析】连接AP,根据同角的余角相等可得∠ABP=∠CBP′,然后利用“边角边”证明△ABP和△CBP′全等,根据全等三角形对应边相等可得AP=CP′,连接PP′,根据旋转的性质可得△PBP′是等腰直角三角形,然后求出∠AP′P是直角,再利用勾股定理用AP′表示出PP′,又等腰直角三角形的斜边等于直角边的倍,代入整理即可得解.【详解】解:如图,连接AP,∵BP绕点B顺时针旋转90°到BP′,∴BP=BP′,∠ABP+∠ABP′=90°,又∵△ABC是等腰直角三角形,∴AB=BC,∠CBP′+∠ABP′=90°,∴∠ABP=∠CBP′,在△ABP和△CBP′中,∵,∴△ABP≌△CBP′(SAS),∴AP=P′C,∵P′A:P′C=1:4,∴AP=4P′A,连接PP′,则△PBP′是等腰直角三角形,∴∠BP′P=45°,PP′=PB,∵∠AP′B=135°,∴∠AP′P=135°﹣45°=90°,∴△APP′是直角三角形,设P′A=x,则AP=4x,∴PP'=,∴P'B=PB=,∴P′A:P′B=2:,故选:C.【点睛】本题主要考查的是全等三角形的性质以及判定,掌握全等三角形的五种判定方法的解本题的关键.二、填空题(每题4分,共24分)13、200【分析】要求飞机从滑行到停止的路程就,即求出函数的最大值即可.【详解】解:所以当t=20时,该函数有最大值200.故答案为200.【点睛】本题主要考查了二次函数的应用,掌握二次函数求最值的方法,即公式法或配方法是解题关键.14、8【分析】先作出辅助线,连接切点,利用内切圆的性质得到BE=BF,CE=CG,ME=MH,NG=NH,再利用等量代换即可解题.【详解】解:∵圆O是△ABC的内切圆,MN是圆O的切线,如下图,连接各切点,有切线长定理易得,BE=BF,CE=CG,ME=MH,NG=NH,∵△ABC周长为20cm,BC=6cm,∴BC=CE+BE=CG+BF=6cm,∴△AMN的周长=AM+AN+MN=AM+AN+FM+GN=AF+AG,又∵AF+AG=AB+AC-(BF+CG)=20-6-6=8cm故答案是8【点睛】本题考查了三角形内接圆的性质,切线长定理的应用,中等难度,熟练掌握等量代换的方法是解题关键.15、1+1【分析】作AD⊥OB于点D,根据题目条件得出∠OAD=60°、∠DAB=45°、OA=4km,再分别求出AD、OD、BD的长,从而得出答案.【详解】如图所示,过点A作AD⊥OB于点D,由题意知,∠AOD=30°,OA=4km,则∠OAD=60°,∴∠DAB=45°,在Rt△OAD中,AD=OAsin∠AOD=4×sin30°=4×=1(km),OD=OAcos∠AOD=4×cos30°=4×=1(km),在Rt△ABD中,BD=AD=1km,∴OB=OD+BD=1+1(km),故答案为:1+1.【点睛】本题主要考查解直角三角形的应用−方向角问题,解题的关键是构建合适的直角三角形,并熟练运用三角函数进行求解.16、或【分析】分两种情况讨论:①当D在线段BC上时,如图1,过D作DH∥CE交AB于H.②当D在线段CB延长线上时,如图2,过B作BH∥CE交AD于H.利用平行线分线段成比例定理解答即可.【详解】分两种情况讨论:①当D在线段BC上时,如图1,过D作DH∥CE交AB于H.∵DH∥CE,∴.设BH=x,则HE=3x,∴BE=4x.∵E是AB的中点,∴AE=BE=4x.∵EM∥HD,∴.②当D在线段CB延长线上时,如图2,过B作BH∥CE交AD于H.∵DC=3DB,∴BC=2DB.∵BH∥CE,∴.设DH=x,则HM=2x.∵E是AB的中点,EM∥BH,∴,∴AM=MH=2x,∴.综上所述:的值为或.故答案为:或.【点睛】本题考查了平行线分线段成比例定理.掌握辅助线的作法是解答本题的关键.17、1;【解析】解:设圆的半径为x,由题意得:=5π,解得:x=1,故答案为1.点睛:此题主要考查了弧长计算,关键是掌握弧长公式l=(弧长为l,圆心角度数为n,圆的半径为R).18、【分析】先求得正方形的边长,取AB的中点G,连接GF,CG,当点C、F、G在同一直线上时,根据两点之间线段最短,则CF有最小值,此时即可求得这个值.【详解】如图,连接OA、OD,取AB的中点G,连接GF,CG,∵ABCD是圆内接正方形,,∴,∴,∵AF⊥BE,∴,∴,,当点C、F、G在同一直线上时,CF有最小值,如下图:最小值是:,故答案为:【点睛】本题主要考查了正方形的性质,勾股定理,直角三角形斜边上的中线的性质,根据两点之间线段最短确定CF的最小值是解决本题的关键.三、解答题(共78分)19、(1);(2)x=﹣5或x=1.【分析】(1)利用公式法求解可得;(2)利用因式分解法求解可得.【详解】(1)∵a=2,b=﹣6,c=﹣1,∴△=(﹣6)2﹣4×2×(﹣1)=44>0,则x;(2)∵(x+5)2﹣6(x+5)=0,∴(x+5)(x﹣1)=0,则x+5=0或x﹣1=0,解得:x=﹣5或x=1.【点睛】本题考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解答本题的关键.20、一条直角边的长为6cm,则另一条直角边的长为8cm.【分析】可设较短的直角边为未知数x,表示出较长的边,根据直角三角形的面积为24列出方程求正数解即可.【详解】解:设一条直角边的长为xcm,则另一条直角边的长为(x+2)cm.根据题意列方程,得.解方程,得:x1=6,x2=(不合题意,舍去).∴一条直角边的长为6cm,则另一条直角边的长为8cm.【点睛】本题考查一元二次方程的应用;用到的知识点为:直角三角形的面积等于两直角边积的一半.21、(1)作图见解析;(2)证明见解析.【分析】(1)分别作A'C'=2AC、A'B'=2AB、B'C'=2BC得△A'B'C'即可.(2)根据中位线定理易得△DEF∽△CAB,△D'E'F'∽△C'A'B',故可得△DEF∽△D'E'F'.【详解】解:(1)作线段A'C'=2AC、A'B'=2AB、B'C'=2BC,得△A'B'C'即为所求.证明:∵A'C'=2AC、A'B'=2AB、B'C'=2BC,∴△ABC∽△A′B′C′,∴;(2)证明:∵D、E、F分别是△ABC三边AB、BC、AC的中点,∴DE=AC,DF=BC,EF=AB,∴△DEF∽△CAB,同理:△D'E'F'∽△C'A'B',由(1)可知:△ABC∽△A′B′C′,∴△DEF∽△D'E'F'.【点睛】本题考查了相似三角形的判定和性质及三角形的中位线定理,解答本题的关键是掌握相似三角形的判定方法.22、(1)共有12种等可能结果,见解析;(2)见解析,他们恰好都选中政治的概率为.【解析】(1)利用树状图可得所有等可能结果;(2)画树状图展示所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解可得.【详解】解:(1)画树状图如下,由树状图知,共有12种等可能结果;(2)画树状图如下由树状图知,共有9种等可能结果,其中他们恰好都选中政治的只有1种结果,所以他们恰好都选中政治的概率为.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出,再从中选出符合事件或的结果数目,求出概率.23、(1)60°;(2)【分析】(1)根据扇形面积公式求圆心角的度数即可;(2)由第一问,求得∠BOC的度数,然后利用弧长公式求解.【详解】由扇形面积公式得:∴的长度为:【点睛】本题考查扇形面积和弧长的求法,熟练掌握公式正确进行计算是本题的解题关键.24、(1)见解析;(2)见解析【分析】(1)根据平行线的性质得∠B=∠C,然后由两个角对应相等,即可证明两个三角形相似;(2)由(1)△AFE∽△BFA,得到,即可得到结论成立.【详解】解:证明:(1)∵AB∥CD(已知),∴∠B=∠C(两直线平行内错角相等),又∠EAF=∠C(已知),∴∠B=∠EAF(等量代换),又∠AFE=∠BFA(公共角),∴△AFE∽△BFA(两对对应角相等的两三角形相似)(2)由(1)得到△AFE∽△BFA,∴,即AF2=EF·FB.【点睛】本题考查了相似三角形的判定和性质,平行线的性质,解题的关键是熟练掌握相似三角形的判
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年商用电器买卖协议模板
- 2024安徽省农民工劳务协议模板
- 城市电缆布设施工协议文本
- 2024年金融权利质押协议模板
- 文书模板-《帮忙办事协议书》
- 2024年店面租赁协议模板
- 2024年管理局服务协议条款
- 2024年技术顾问服务协议样本
- 中餐分餐课件教学课件
- 广东省清远市阳山县2024-2025学年上学期期中质检八年级数学试卷(含答案)
- 国家开放大学2024年《知识产权法》形考任务1-4答案
- 2024-2029年中国水上游乐园行业十四五发展分析及投资前景与战略规划研究报告
- 节能电梯知识培训课件
- 小班美术《小刺猬背果果》课件
- 档案移交方案
- 高中英语外研版(2019)选择性必修第一册各单元主题语境与单元目标
- 人教版数学三年级上册《1-4单元综合复习》试题
- 2024年水利工程行业技能考试-水利部质量检测员笔试历年真题荟萃含答案
- (新版)三级物联网安装调试员技能鉴定考试题库大全-上(单选题汇总)
- 2024年室内装饰设计师(高级工)考试复习题库(含答案)
- 教育培训行业2024年生产与制度改革方案
评论
0/150
提交评论