2022-2023学年衡水市滏阳中学九年级数学第一学期期末学业质量监测模拟试题含解析_第1页
2022-2023学年衡水市滏阳中学九年级数学第一学期期末学业质量监测模拟试题含解析_第2页
2022-2023学年衡水市滏阳中学九年级数学第一学期期末学业质量监测模拟试题含解析_第3页
2022-2023学年衡水市滏阳中学九年级数学第一学期期末学业质量监测模拟试题含解析_第4页
2022-2023学年衡水市滏阳中学九年级数学第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,AD是△ABC的中线,点E在AD上,AD=4DE,连接BE并延长交AC于点F,则AF:FC的值是()A.3:2 B.4:3 C.2:1 D.2:32.下列事件中,是必然事件的是()A.掷一次骰子,向上一面的点数是6B.13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月C.射击运动员射击一次,命中靶心D.经过有交通信号灯的路口,遇到红灯3.一个盒子里有完全相同的三个小球,球上分别标上数字-2、1、4随机摸出一个小球(不放回)其数字记为p,再随机摸出另一个小球其数字记为q,则满足关于x的方程有实数根的概率是()A. B. C. D.4.如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子()A.逐渐变短 B.先变短后变长C.先变长后变短 D.逐渐变长5.“线段,等边三角形,圆,矩形,正六边形”这五个图形中,既是轴对称图形又是中心对称图形的个数有()A.5个B.4个C.3个D.2个6.如图,已知点是第一象限内横坐标为2的一个定点,轴于点,交直线于点,若点是线段上的一个动点,,,点在线段上运动时,点不变,点随之运动,当点从点运动到点时,则点运动的路径长是()A. B. C.2 D.7.如图,函数的图象与轴的一个交点坐标为(3,0),则另一交点的横坐标为()A.﹣4 B.﹣3 C.﹣2 D.﹣18.下列计算正确的是()A. B. C.÷ D.9.如图,在平面直角坐标系中,点P在函数y=(x>0)的图象上从左向右运动,PA∥y轴,交函数y=﹣(x>0)的图象于点A,AB∥x轴交PO的延长线于点B,则△PAB的面积()A.逐渐变大 B.逐渐变小 C.等于定值16 D.等于定值2410.如果2是方程x2-3x+k=0的一个根,则常数k的值为()A.2 B.1 C.-1 D.-211.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表:X﹣1013y﹣33下列结论:(1)abc<0;(2)当x>1时,y的值随x值的增大而减小;(3)16a+4b+c<0;(4)抛物线与坐标轴有两个交点;(5)x=3是方程ax2+(b﹣1)x+c=0的一个根;其中正确的个数为()A.5个 B.4个 C.3个 D.2个12.现有两组相同的牌,每组三张且大小一样,三张牌的牌面数字分别是1、2、3,从每组牌中各摸出一张牌.两张牌的牌面数字之和等于4的概率是()A. B. C. D.二、填空题(每题4分,共24分)13.若、是关于的一元二次方程的两个根,且,则,,,的大小关系是_____________.14.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=70°,则∠EAC的度数为____________.15.某游乐场新推出一个“极速飞车”的项目.项目有两条斜坡轨道以满足不同的难度需求,游客可以乘坐垂直升降电梯AB自由上下选择项目难度,其中斜坡轨道BC的坡度为,BC=米,CD=8米,∠D=36°,(其中A,B,C,D均在同一平面内)则垂直升降电梯AB的高度约为__________米.(精确到0.1米,参考数据:)16.抛物线的对称轴是________.17.某农科所在相同条件下做玉米种子发芽实验,结果如下:某位顾客购进这种玉米种子10千克,那么大约有_____千克种子能发芽.18.如图1是一种广场三联漫步机,其侧面示意图,如图2所示,其中,.①点到地面的高度是__________.②点到地面的高度是____________.三、解答题(共78分)19.(8分)阅读下面材料,完成(1)-(3)题.数学课上,老师出示了这样一道题:如图,△ABC中,D为BC中点,且AD=AC,M为AD中点,连结CM并延长交AB于N.探究线段AN、MN、CN之间的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现线段AN、AB之间存在某种数量关系.”小强:“通过倍长不同的中线,可以得到不同的结论,但都是正确的,大家就大胆的探究吧.”小伟:“通过构造、证明相似三角形、全等三角形,就可以将问题解决.”......老师:“若其他条件不变,设AB=a,则可以用含a的式子表示出线段CM的长.”(1)探究线段AN、AB之间的数量关系,并证明;(2)探究线段AN、MN、CN之间的数量关系,并证明;(3)设AB=a,求线段CM的长(用含a的式子表示).20.(8分)等腰中,,作的外接圆⊙O.(1)如图1,点为上一点(不与A、B重合),连接AD、CD、AO,记与的交点为.①设,若,请用含与的式子表示;②当时,若,求的长;(2)如图2,点为上一点(不与B、C重合),当BC=AB,AP=8时,设,求为何值时,有最大值?并请直接写出此时⊙O的半径.21.(8分)当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量(本)与销售单价(元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求的值.22.(10分)已知关于的方程.(1)求证:不论取何实数,该方程都有两个不相等的实数根;(2)若该方程的一个根为,求该方程的另一个根.23.(10分)解方程:(1)x2+3=4x(2)3x(x-3)=-424.(10分)如图:△ABC与△DEF中,边BC,EF在同一条直线上,AB∥DE,AC∥DF,且BF=CE,求证:AC=DF.25.(12分)解方程:26.小明准备进行如下操作实验:把一根长为的铁丝剪成两段,并把每一段围成一个正方形.(1)要使这两个正方形的面积之和等于,小明该怎么剪?(2)小刚对小明说:“这两个正方形的面积之和不可能等于.”小刚的说法对吗?请说明理由.

参考答案一、选择题(每题4分,共48分)1、A【分析】过点D作DG∥AC,根据平行线分线段成比例定理,得FC=1DG,AF=3DG,因此得到AF:FC的值.【详解】解:过点D作DG∥AC,与BF交于点G.

∵AD=4DE,

∴AE=3DE,

∵AD是△ABC的中线,∴∵DG∥AC∴,即AF=3DG,即FC=1DG,∴AF:FC=3DG:1DG=3:1.

故选:A.【点睛】本题考查了平行线分线段成比例定理,正确作出辅助线充分利用对应线段成比例的性质是解题的关键.2、B【分析】事先能肯定它一定会发生的事件称为必然事件,即发生的概率是1的事件.【详解】解:A.掷一次骰子,向上一面的点数是6,属于随机事件;B.13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月,属于必然事件;C.射击运动员射击一次,命中靶心,属于随机事件;D.经过有交通信号灯的路口,遇到红灯,属于随机事件;故选B.【点睛】此题主要考查事件发生的概率,解题的关键是熟知必然事件的定义.3、A【详解】解:列表如下:

-214-2---(1,-2)(4,-2)1(-2,1)---(4,1)4(-2,4)(1,4)---所有等可能的情况有6种,其中满足关于x的方程x2+px+q=0有实数根,即满足p2-4q≥0的情况有4种,则P(满足方程的根)=故选:A.4、B【分析】小亮由A处径直路灯下,他得影子由长变短,再从路灯下到B处,他的影子则由短变长.【详解】晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子先变短,再变长.故选B.【点睛】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.5、B【解析】根据轴对称图形与中心对称图形的概念结合线段、等边三角形、圆、矩形、正六边形的性质求解.【详解】∵在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个.故答案为:B.【点睛】本题考查的知识点是中心对称图形与轴对称图形的概念,解题关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后原图形重合.6、D【分析】根据题意利用相似三角形可以证明线段就是点运动的路径(或轨迹),又利用∽求出线段的长度,即点B运动的路径长.【详解】解:由题意可知,,点在直线上,轴于点,则为顶角30度直角三角形,.如下图所示,设动点在点(起点)时,点的位置为,动点在点(终点)时,点的位置为,连接,∵,∴又∵,∴(此处也可用30°角的)∴∽,且相似比为,∴现在来证明线段就是点运动的路径(或轨迹).如图所示,当点运动至上的任一点时,设其对应的点为,连接,,∵,∴又∵,∴∴∽∴又∵∽∴∴∴点在线段上,即线段就是点运动的路径(或轨迹).综上所述,点运动的路径(或轨迹)是线段,其长度为.故选:【点睛】本题考查坐标平面内由相似关系确定的点的运动轨迹,难度很大.本题的要点有两个:首先,确定点B的运动路径是本题的核心,这要求考生有很好的空间想象能力和分析问题的能力;其次,由相似关系求出点B运动路径的长度,可以大幅简化计算,避免陷入坐标关系的复杂运算之中.7、D【分析】根据到函数对称轴距离相等的两个点所表示的函数值相等可求解.【详解】根据题意可得:函数的对称轴直线x=1,则函数图像与x轴的另一个交点坐标为(-1,0).故横坐标为-1,故选D考点:二次函数的性质8、C【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的除法法则对C进行判断;根据完全平方公式对D进行判断.【详解】A、原式=2﹣,所以A选项错误;B、3与不能合并,所以B选项错误;C、原式==2,所以C选项正确;D、原式=3+4+4=7+4,所以D选项错误.故选:C.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.9、C【分析】根据反比例函数k的几何意义得出S△POC=×2=1,S矩形ACOD=6,即可得出,从而得出,通过证得△POC∽△PBA,得出,即可得出S△PAB=1S△POC=1.【详解】如图,由题意可知S△POC=×2=1,S矩形ACOD=6,∵S△POC=OC•PC,S矩形ACOD=OC•AC,∴,∴,∴,∵AB∥轴,∴△POC∽△PBA,∴,∴S△PAB=1S△POC=1,∴△PAB的面积等于定值1.故选:C.【点睛】本题考查了反比例函数的性质以及矩形的面积的计算,利用相似三角形面积比等于相似比的平方是解决本题的关键.10、A【分析】把x=1代入已知方程列出关于k的新方程,通过解方程来求k的值.【详解】解:∵1是一元二次方程x1-3x+k=0的一个根,

∴11-3×1+k=0,

解得,k=1.

故选:A.【点睛】本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.11、C【解析】先根据表格中的数据大体画出抛物线的图象,进一步即可判断a、b、c的符号,进而可判断(1);由点(0,3)和(3,3)在抛物线上可求出抛物线的对称轴,然后结合抛物线的开口方向并利用二次函数的性质即可判断(2);由(2)的结论可知:当x=4和x=﹣1时对应的函数值相同,进而可判断(3);根据画出的抛物线的图象即可判断(4);由表中的数据可知:当x=3时,二次函数y=ax2+bx+c=3,进一步即可判断(5),从而可得答案.【详解】解:(1)画出抛物线的草图如图所示:则易得:a<0,b>0,c>0,∴abc<0,故(1)正确;(2)由表格可知:点(0,3)和(3,3)在抛物线上,且此两点关于抛物线的对称轴对称,∴抛物线的对称轴为直线x=,因为a<0,所以,当x>时,y的值随x值的增大而减小,故(2)错误;(3)∵抛物线的对称轴为直线x=,∴当x=4和x=﹣1时对应的函数值相同,∵当x=-1时,y<0,∴当x=4时,y<0,即16a+4b+c<0,故(3)正确;(4)由图象可知,抛物线与x轴有两个交点,与y轴有一个交点,故(4)错误;(5)由表中的数据可知:当x=3时,二次函数y=ax2+bx+c=3,∴x=3是方程ax2+(b﹣1)x+c=0的一个根,故(5)正确;综上,结论正确的共有3个,故选:C.【点睛】本题考查了抛物线的图象和性质以及抛物线与一元二次方程的关系,根据表格中的数据大体画出函数图象、熟练掌握二次函数的性质是解题的关键.12、B【分析】画树状图列出所有情况,看数字之和等于4的情况数占总情况数的多少即可.【详解】画树状图得:则共有9种等可能的结果,其中两张牌的牌面数字之和等于4的有3种结果,∴两张牌的牌面数字之和等于4的概率为=,故选:B.【点睛】本题考查列表法和树状图法,解题的关键是可以不重复不遗漏的列出所有可能的结果.二、填空题(每题4分,共24分)13、【分析】根据题意和二次函数性质,可以判断出的大小关系,本题得以解决.【详解】令,则该函数的图象开口向上,

当时,,

当时,

即,

∵是关于的方程的两根,且,

∴,

故答案为:.【点睛】本题考查了抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.14、【分析】根据菱形的性质求∠ACD的度数,根据圆内接四边形的性质求∠AEC的度数,由三角形的内角和求解.【详解】解:∵四边形ABCD是菱形,∴AD∥BC,AD=DC,∴∠DAC=∠ACB,∠DAC=∠DCA∵∠D=70°,∴∠DAC=,∴∠ACB=55°,∵四边形ABCD是⊙O的内接四边形,∴∠AEC+∠D=180°,∴∠AEC=180°-70°=110°,∴∠EAC=180°-∠AEC-∠ACB=180°-55°-110°=15°,∴∠EAC=15°.故答案为:15°【点睛】本题考查了菱形的性质,三角形的内角和,圆内接四边形的性质,熟练掌握菱形的性质和圆的性质是解答此题的关键.15、11.2【分析】延长AB和DC相交于点E,根据勾股定理,可得CE,BE的长,根据正切函数,可得AE的长,再根据线段的和差,可得答案.【详解】解:如图,延长AB和DC相交于点E,

由斜坡轨道BC的坡度为i=1:1,得

BE:CE=1:1.

设BE=x米,CE=1x米,

在Rt△BCE中,由勾股定理,得

BE1+CE1=BC1,

即x1+(1x)1=(11)1,

解得x=11,

即BE=11米,CE=12米,

∴DE=DC+CE=8+12=31(米),

由tan36°≈0.73,得tanD=≈0.73,

∴AE≈0.73×31=13.36(米).

∴AB=AE-BE=13.36-11=11.36≈11.2(米).

故答案为:11.2.【点睛】本题考查了解直角三角形的应用,作出辅助线构造直角三角形,利用勾股定理得出CE,BE的长度是解题关键.16、【分析】根据二次函数y=ax2+bx+c(a≠0)的对称轴是直线x=−计算.【详解】抛物线y=2x2+24x−7的对称轴是:x=−=−1,故答案为:x=−1.【点睛】本题考查的是二次函数的性质,掌握二次函数y=ax2+bx+c(a≠0)的对称轴是直线x=−是解题的关键.17、1.1【分析】观察图中的频率稳定在哪个数值附近,由此即可求出作物种子的概率.【详解】解:∵大量重复试验发芽率逐渐稳定在0.11左右,∴10kg种子中能发芽的种子的质量是:10×0.11=1.1(kg)故答案为:1.1.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.18、【分析】①过点A作,垂足为F,得出,BF=40,利用勾股定理可得出AF的长,即A到地面的高度②过点D作,垂足为H,可得出,,可求出AH的长度,从而得出D到底面的高度为AH+AF.【详解】解:过点A作,垂足为F,过点D作,垂足为H,如下图:①∵,∴,BF=40cm∴∴A到地面的高度为:.②∵∴,∴,∴∴AH=10,∴D到底面的高度为AH+AF=(10+)cm.【点睛】本题考查的知识点是等腰三角形的性质以及相似三角形的判定与性质,解题的关键是弄清题意,结合题目作出辅助线,再利用相似三角形性质求解.三、解答题(共78分)19、(1)(2)或,证明见解析(3)【分析】(1)过B做BQ∥NC交AD延长线于Q,构造出全等三角形△BDQ≌△CDM(ASA)、相似三角形△ANM∽△ABQ,再利用全等和相似的性质即可得出结论;(2)延长AD至H,使AD=DH,连接CH,可得△ABD≌△HCD(SAS),进一步可证得,得到,然后证明,即可得到结论:;延长CM至Q,使QM=CM,连接AQ,延长至,使可得、四边形为平行四边形,进一步可证得,即可得到结论;(3)在(1)、(2)的基础之上,用含的式子表示出、,从而得出.【详解】(1)过B做BQ∥NC交AD延长线于Q,如图:∵D为BC中点易得△BDQ≌△CDM(ASA)∴DQ=DM,∵M为AD中点,∴AM=DM=DQ,∵BQ∥NC,∴△ANM∽△ABQ,∴,∴;(2)①结论:,证明:延长AD至H,使AD=DH,连接CH,如图:易得△ABD≌△HCD(SAS),∴∠H=∠BAH,∴AB∥HC,设AM=x,则AD=AC=2x,AH=4x,∴,,∴;∴,,∴,∴,∴,∵,∴,∴,∴;②结论:;证明:延长至,使,连接,延长至,使,如图:则,则四边形为平行四边形,∴,,,,,,∴,∴,∴,∴,,∴,∴;(3)由(1)得,,∴,由(2)①得,∵∴,∴,∴,∵,∴,∴,∴.【点睛】本题考查了全等三角形的判定和性质、相似三角形的判定和性质,合理的添加辅助线是解题的关键.20、(1)①;②;(2)PB=5时,S有最大值,此时⊙O的半径是.【分析】(1)①连接BO、CO,利用SSS可证明△ABO≌△ACO,可得∠BAO=∠CAO=y,利用等腰三角形的性质及三角形内角和定理可用y表示出∠ABC,由圆周角定理可得∠DCB=∠DAB=x,根据即可得答案;②过点作于点,根据垂径定理可得AF的长,利用勾股定理可求出OF的长,由(1)可得,由AB⊥CD可得n=90°,即可证明y=x,根据AB⊥CD,OF⊥AC可证明△AED∽△AFO,设DE=a,根据相似三角形的性质可,由∠D=∠B,∠AED=∠CEB=90°可证明△AED∽△CEB,设,根据相似三角形的性质可得,根据线段的和差关系和勾股定理列方程组可求出a、b的值,根据△AED∽△AFO即可求出AD的值;(2)延长到,使得,过点B作BD⊥AP于D,BE⊥CP,交CP延长线于E,连接OA,作OF⊥AB于F,根据BC=AB可得三角形ABC是等边三角形,根据圆周角定理可得∠APM=60°,即可证明△APM是等边三角形,利用角的和差关系可得∠BAP=∠CAM,利用SAS可证明△BAP≌△CPM,可得BP=CM,即可得出PB+PC=AP,设,则,利用∠APB和∠BPE的正弦可用x表示出BD、BE的长,根据可得S与x的关系式,根据二次函数的性质即可求出S取最大值时x的值,利用∠BPA的余弦及勾股定理可求出AB的长,根据等边三角形的性质及垂径定理求出OA的长即可得答案.【详解】(1)①连接BO,CO,∵,且为公共边,∴,∴,∴,∴∵,∵,∴∴.②过点作于点,∴,∴,∵,∴,∴,∵,∴,∴△AED∽△AFO,∴=,即,设,则∵,∴△AED∽△CEB,∴,即设,则,∴解得:或,∵a>0,b>0,∴,即DE=,∵△AED∽△AFO,∴,∴AD==3=.(2)延长到,使得,过点B作BD⊥AP于D,BE⊥CP,交CP延长线于E,连接OA,作OF⊥AB于F,∵BC=AB,AB=AC,∴是等边三角形,∴,∴,∴是等边三角形,∴,∵∠BAP+∠PAC=∠CAM+∠PAC=60°,∴在△BAP和△CAM中,,∴,∴,∴设,则,∵∠APB=∠ACB=60°,∠APM=60°,∴∠BPE=60°,∴BE=PB·sin60°=,PD=PB·sin60°=,∵,∴S=PC·BE+×AP·BD=,∴当时,即PB=5时,S有最大值,∴BD==,PD=PB·cos60°=,∴AD=AP-PD=,∴AB==7,∵△ABC是等边三角形,O为△ABC的外接圆圆心,∴∠OAF=30°,AF=AB=,∴OA==.∴此时的半径是.【点睛】本题考查圆周角定理、相似三角形的判定与性质、垂径定理、等边三角形的判定与性质、求二次函数的最值及解直角三角形,综合性比较强,熟练掌握相关的性质及定理是解题关键.21、(1);(1).【解析】(1)根据题意列函数关系式即可;

(1)设每天扣除捐赠后可获得利润为w元.根据题意得到w=(x-10-a)(-10x+500)=-10x1+(10a+700)x-500a-10000(30≤x≤38)求得对称轴为x=35+a,且0<a≤6,则30<35+a≤38,则当时,取得最大值,解方程得到a1=1,a1=58,于是得到a=1.【详解】解:(1)根据题意得,;(1)设每天扣除捐赠后可获得利润为元.对称轴为x=35+a,且0<a≤6,则30<35+a≤38,则当时,取得最大值,∴∴(不合题意舍去),∴.【点睛】本题考查了二次函数的应用,难度较大,最大销售利润的问题常利用函数的增减性来解答,正确的理解题意,确定变量,建立函数模型.22、(1)证明见解析;(2)另一根为-2.【分析】(1)写出根的判别式,配方后得到完全平方式,进行解答;

(2)将代入方程得到的值,再根据根与系数的关系求出另一根.【详解】(1)∵,,,∴∴不论取何实数,该方程都有两个不相等的实数根;(2)将代入方程得,,解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论