版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第四章曲线运动第3讲圆周运动课标要求1.会用线速度、角速度、周期描述匀速圆周运动。2.知道匀速圆周运动中向心加速度的大小和方向。3.通过实验,探究并了解匀速圆周运动中向心力大小与半径、角
速度、质量的关系。4.能用牛顿第二定律分析匀速圆周运动的向心力。5.了解生产生活中的离心现象及其产生的原因。考点一描述圆周运动的物理量考点二圆周运动的动力学问题内容索引课时测评考点一描述圆周运动的物理量1.描述圆周运动的物理量知识梳理物理量概念公式、单位线速度(v)(1)意义:描述圆周运动的物体运动______的物理量(2)矢标性:是矢量,方向和半径______,和圆周相切(1)公式:v=(定义式)=(与周期的关系)(2)单位:m/s角速度(ω)意义:描述物体绕______转动快慢的物理量(1)公式:ω=(定义式)=(与周期的关系)(2)单位:rad/s(3)ω与v的关系:v=ωr
快慢垂直圆心物理量概念公式、单位周期(T)转速(n)频率(f)(1)周期与频率:周期是物体沿圆周运动______所用的时间,频率是物体1s内完成圆周运动的______,周期与频率互为________(2)转速:单位时间内物体转过的圈数(3)矢标性:都是标量(1)公式T=
(与频率的关系)(2)T的单位:s,n的单位:r/s、r/min,f的单位:Hz向心加速度(an)(1)意义:描述线速度______变化快慢的物理量(2)矢标性:是矢量,方向指向圆心(1)公式:an=
=______=
r=ωv(2)单位:m/s2一周圈数倒数方向ω2r2.匀速圆周运动(1)定义:如果物体沿着圆周运动,并且线速度的大小处处______,即为匀速圆周运动。(2)特点:加速度大小______,方向始终指向______,是变加速运动。(3)条件:合外力大小______、方向始终与______方向垂直且指向圆心。相等不变圆心不变速度自主训练1皮带传动问题(多选)如图甲是中学物理实验室常用的感应起电机,它是由两个大小相等直径约为30cm的感应玻璃盘起电的,其中一个玻璃盘通过从动轮与手摇主动轮连接,如图乙所示,现玻璃盘以100r/min的转速旋转,已知主动轮的半径约为8cm,从动轮的半径约为2cm,P和Q是玻璃盘边缘上的两点,若转动时皮带不打滑,下列说法正确的是A.P、Q的线速度相同B.玻璃盘的转动方向与摇把转动方向相反C.P点的线速度大小约为1.6m/sD.摇把的转速约为400r/min√√由于线速度的方向沿曲线的切线方向,由题图乙可知,P、Q两点线速度的方向一定不同,故A错误;若主动轮做顺时针转动,从动轮通过皮带的摩擦力带动转动,所以从动轮逆时针转动,所以玻璃盘的转动方向与摇把转动方向相反,故B正确;玻璃盘的直径是30cm,转速是100r/min,所以线速度v=ωr=2nπr=2×
×π×m/s=0.5πm/s≈1.6m/s,故C正确;从动轮边缘的线速度vc=ωrc=2nπrc=2×
×π×0.02m/s=
πm/s,由于主动轮的边缘各点的线速度与从动轮边缘各点的线速度的大小相等,即vz=vc,所以主动轮的转速nz=
,故D错误。自主训练2摩擦传动问题如图所示,B和C是一组塔轮,即B和C半径不同,但固定在同一转轴上,其半径之比为RB∶RC=3∶2,A轮的半径大小与C轮相同,它与B轮紧靠在一起,当A轮绕过其中心的竖直轴转动时,由于摩擦力作用,B轮也随之无滑动地转动起来。a、b、c分别为三轮边缘的三个点,则a、b、c三点在运动过程中的A.线速度大小之比为3∶2∶2B.角速度之比为3∶3∶2C.转速之比为2∶3∶2D.向心加速度大小之比为9∶6∶4√A、B靠摩擦传动,则边缘上a、b两点的线速度大小相等,即va∶vb=1∶1,故A错误;B、C同轴转动,则边缘上b、c两点的角速度相等,即ωb=ωc,转速之比
,故B、C错误;对a、b两点,由an=
,得
,对b、c两点,由an=ω2r,得
,故ana∶anb∶anc=9∶6∶4,故D正确。常见的三类传动方式及特点1.皮带传动:如图甲、乙所示,皮带与两轮之间无相对滑动时,与皮带接触的轮子边缘上各点的线速度大小相等,图甲中vA=vC≠vB,图乙中vA=vB≠vP=vQ。归纳提升2.摩擦传动和齿轮传动:如图丙、丁所示,两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等,即vA=vB。3.同轴传动:如图戊、己所示,绕同一转轴转动的物体,角速度相同,即ωA=ωB,由v=ωr知v与r成正比。返回考点二圆周运动的动力学问题1.匀速圆周运动的向心力(1)作用效果:向心力产生向心加速度,只能改变速度的______,不能改变速度的______。(2)大小:Fn=man=____=_______=_______=4mπ2n2r=mωv。(3)方向:始终沿半径方向指向______,时刻在改变,即向心力是一个变力。(4)来源:向心力可以由一个力提供,也可以由几个力的______提供,还可以由一个力的______提供。知识梳理方向大小mω2r圆心合力分力2.离心运动和近心运动(1)离心运动:做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力的情况下,就做______________的运动。(2)受力特点(如图所示)①当F=0时,物体沿______方向飞出,做匀速直线运动。②当0<F<mω2r时,物体逐渐______圆心,做______运动。③当F>mω2r时,物体逐渐______圆心,做______运动。(3)本质:离心(或近心)运动的本质并不是受到离心(或近心)力的作用,而是提供的向心力______(或______)做匀速圆周运动需要的向心力。逐渐远离圆心切线远离离心靠近近心小于大于3.变速圆周运动合力与向心力的特点变速圆周运动的合力方向一般不指向圆心,可以分解为如下两个分力,如图所示。(1)切向分力Fτ:产生切向加速度aτ,只改变线速度的大小;当aτ与v同向时,速度增大,做加速圆周运动,反向时则速度减小,做减速圆周运动。(2)指向圆心的分力Fn:提供向心力,产生向心加速度an,只改变线速度的______。方向(2023·江苏高考·改编)“转碟”是传统的杂技项目,如图所示,质量为m的发光物体放在半径为r的碟子边缘,杂技演员用杆顶住碟子中心,使发光物体随碟子一起在水平面内绕A点做匀速圆周运动。当角速度为ω0时,碟子边缘看似一个光环。判断下列说法的正误:(1)发光物体随碟子一起转动的向心力由碟子的摩擦力提供。
()(2)如果发光物体所受碟子的摩擦力突然减小时,发光物体将沿碟子边缘的切线方向飞出。
()(3)当发光物体随碟子做变速圆周运动时发光物体的向心力一定不指向圆心。
()(4)当碟子的角速度增大到一定数值时发光物体会做离心运动。
()高考情境链接√××√1.圆周运动向心力来源的理解可以由重力、弹力、摩擦力等各种性质的力提供,可以由某个力或某个力的分力提供,也可以由几个力的合力提供,因此在受力分析中要避免再另外添加一个向心力。2.“四步法”分析圆周运动的动力学问题核心突破考向1圆周运动的动力学分析(多选)(2021·河北高考)如图,矩形金属框MNQP竖直放置,其中MN、PQ足够长,且PQ杆光滑。一根轻弹簧一端固定在M点,另一端连接一个质量为m的小球,小球穿过PQ杆。金属框绕MN轴分别以角速度ω和ω′匀速转动时,小球均相对PQ杆静止。若ω′>ω,则与以ω匀速转动时相比,以ω′匀速转动时A.小球的高度一定降低B.弹簧弹力的大小一定不变C.小球对杆压力的大小一定变大D.小球所受合外力的大小一定变大例1 √√对小球受力分析,设弹簧弹力为F弹,弹簧与水平方向的夹角为θ,则对小球在竖直方向,有F弹sinθ=mg,而F弹=k,可知θ为定值,F弹不变,则当转速增大后,小球的高度不变,弹簧的弹力不变,故A错误,B正确;当转速较小时,水平方向杆对小球的弹力FN背离转轴,则F弹cosθ-FN=mω2r,即FN=F弹cosθ-mω2r,当转速较大时,杆对小球的弹力指向转轴,F弹cosθ+FN′=mω′2r,即FN′=mω′2r-F弹cosθ,因ω′>ω
,根据牛顿第三定律可知,小球对杆的压力的大小不一定变大,故C错误;根据F合=mω2r可知,角速度变大,则小球所受合外力一定变大,故D正确。考向2圆锥摆模型四个完全相同的小球A、B、C、D均在水平面内做圆锥摆运动。如图甲所示,其中小球A、B在同一水平面内做圆锥摆运动(连接B球的绳较长);如图乙所示,小球C、D在不同水平面内做圆锥摆运动,但是连接C、D的绳与竖直方向之间的夹角相同(连接D球的绳较长),则下列说法错误的是A.小球A、B角速度相等B.小球A、B线速度大小相等C.小球C、D向心加速度大小相等D.小球D受到绳的拉力与小球C受到绳的拉力大小相等例2 √对题图甲A、B分析:设绳与竖直方向的夹角为θ,绳长为l,小球的质量为m,小球A、B到悬点O的竖直距离为h,则有mgtanθ=mω2lsinθ,解得ω=
,v=ωlsinθ=lsinθ,所以小球A、B的角速度相等,线速度大小不相同,故A正确,B错误;对题图乙C、D分析:设绳与竖直方向的夹角为α,小球的质量为m,绳长为L,绳的拉力为FT,则有mgtanα=ma,FTcosα=mg,可得a=gtanα,FT=
,所以小球C、D向心加速度大小相等,受到绳的拉力大小也相等,故C、D正确。故选B。规律总结圆锥摆模型的分析1.如图甲所示,向心力Fn=mgtanθ=m=mω2r,且r=Lsinθ,解得v2.稳定状态下,θ角越大,对应的角速度ω和线速度v就越大,小球受到的拉力FT=
和运动所需向心力也越大。规律总结3.对于如图乙所示的双圆锥摆模型:P、Q随旋转圆盘绕中心轴匀速转动,则它们做圆周运动的角速度相等,故它们的线速度、向心加速度均与轨道半径成正比,且在竖直方向上受到的合力为零。考向3火车、汽车转弯问题(2024·河南平顶山质检)火车转弯时的受力分析如图所示,铁路转弯处的圆弧半径为R,两铁轨之间的距离为d,内外轨的高度差为h,铁轨平面和水平面间的夹角为α(α很小,可近似认为tanα≈sinα),重力加速度为g,下列说法正确的是A.火车转弯时受到重力、支持力和向心力的作用B.火车过转弯处的速度v=
时,列车轮缘不会挤压内轨和外轨C.火车过转弯处的速度v<
时,列车轮缘会挤压外轨D.若减小α角,可提高列车安全过转弯处的速度例3 √列车以规定速度转弯时受到重力、支持力,重力和支持力的合力提供向心力,故A错误;当重力和支持力的合力提供向心力时,有m=mgtanα≈mgsinα
=mg,解得v=
,列车轮缘不会挤压内轨和外轨,故B正确;列车过转弯处的速度v<
时,转弯所需的合力F<mgtanα,故此时列车轮缘受内轨挤压,故C错误;若要提高列车速度,则列车所需的向心力增大,故需要增大α角,故D错误。考向4离心运动问题(多选)如图为波轮式洗衣机的工作原理示意图,当甩衣桶在电机的带动下高速旋转时,衣服紧贴在甩衣桶器壁上,从而迅速将水甩出。衣服(带水,可视为质点)质量为m,衣服和器壁间的动摩擦因数约为μ,甩衣桶的半径为r,洗衣机的外桶的半径为R,当角速度达到ω0时,衣服上的水恰好被甩出,假设滑动摩擦力和最大静摩擦力相等,重力加速度为g,例4 A.衣服(带水)做匀变速曲线运动B.电动机的角速度至少为
时,衣服才掉不下来C.当ω=ω0时,水滴下落高度
打到外桶上D.当ω=ω0时,水滴下落高度
打到外桶上√√则下列说法正确的是衣服(带水)做非匀变速曲线运动,因为其向心加速度是变化的,故A错误;在竖直方向,根据平衡条件有mg=μFN,由于弹力提供向心力,由牛顿第二定律有FN=mω2r,联立解得ω=
,B正确;当ω=ω0时,水滴打到外桶上,设水滴下落高度为h,根据平抛运动规律有h=
gt2,x=vt,r2+x2=R2,v=ω0r,联立解得h=
,C错误,D正确。返回课时测评1.(多选)如图所示,A、B为某小区门口自动升降杆上的两点,A在杆的顶端处,B在杆的中点“STOP”处。杆从水平位置匀速转至竖直位置的过程中,下列判断正确的是A.A、B两点的角速度大小之比为2∶1B.A、B两点的线速度大小之比为2∶1C.A、B两点的向心加速度大小之比为4∶1D.A、B两点的转速之比为1∶1√√因为自动升降杆上的A、B两点是同轴转动,所以A、B
两点的角速度相等,转速也相等,故A错误,D正确;由角速度与线速度关系式v=ωr,可知角速度相等时线速度之比等于半径之比,即A、B
两点线速度大小之比为2∶1,故B正确;由向心加速度公式a=ω2r,可知角速度相等时向心加速度之比等于半径之比,所以A、B
两点向心加速度大小之比为2∶1,故C错误。2.(2023·全国甲卷)
一质点做匀速圆周运动,若其所受合力的大小与轨道半径的n次方成正比,运动周期与轨道半径成反比,则n等于A.1 B.2C.3 D.4√质点做匀速圆周运动,根据题意设周期T=
,合外力等于向心力,根据F合=Fn=mr,联立可得Fn=r3,其中
为常数,r的指数为3,故题中n=3,故选C。3.(2024·安徽黄山模拟)如图甲所示,修正带是通过两个齿轮相互咬合进行工作的,其原理可简化为图乙中所示的模型。A、B是大、小齿轮边缘上的两点,C是大轮上的一点。若大轮半径是小轮半径的2倍,小轮中心到A点和大轮中心到C点的距离之比为2∶1,则A、B、C三点A.线速度大小之比为4∶4∶1B.角速度之比为1∶1∶1C.转速之比为2∶2∶1D.向心加速度大小之比为2∶1∶1√A、B是大、小齿轮边缘上的两点,可知vA=vB,又v=ωr,rA=
rB,可得ωA=2ωB,由于B、C两点都在大轮上,可知ωB=ωC,又v=ωr,rB=4rC,可得vB=4vC,则A、B、C三点线速度大小之比为vA∶vB∶vC=4∶4∶1,A、B、C三点角速度之比为ωA∶ωB∶ωC=2∶1∶1,选项A正确,B错误;根据角速度和转速的关系ω=2πn,可知A、B、C三点转速之比为nA∶nB∶nC=ωA∶ωB∶ωC=2∶1∶1,选项C错误;根据向心加速度公式有an=ωv,可知A、B、C三点向心加速度大小之比为anA∶anB∶anC=8∶4∶1,选项D错误。故选A。4.(2024·河北沧州模拟)如图甲是我国花样滑冰运动员在赛场上的情形,假设在比赛的某段时间运动员单脚着地,以速度v做匀速圆周运动,如图乙冰鞋与冰面间的夹角为37°,运动员的质量为m,重力加速度为g,sin37°=0.6,cos37°=0.8,不计冰鞋对运动员的摩擦,下列说法正确的是A.运动员受重力、冰鞋的支持力、向心力的作用B.冰鞋对运动员的支持力大小为mgC.运动员做匀速圆周运动的半径为D.运动员做匀速圆周运动的向心加速度大小为g√运动员此时只受到重力和冰鞋的支持力作用,A错误;运动员受到的力如图所示,x轴方向有FNsin37°=ma=m,y轴方向有FNcos37°=mg,联立解得FN=
mg,r=
,a=
g,故B、D错误,C正确。故选C。5.有一种叫“旋转飞椅”的游乐项目(如图所示)。钢绳的一端系着座椅,另一端固定在水平转盘上。转盘可绕穿过其中心的竖直轴转动。当转盘匀速转动时,钢绳与转轴在同一竖直平面内。将游客和座椅看作一个质点,不计钢绳的重力,以下分析正确的是A.旋转过程中,游客和座椅受到重力、拉力和向心力B.根据v=ωr可知,坐在外侧的游客旋转的线速度更大C.根据Fn=mω2r可知,“飞椅”转动的角速度越大,旋转半径越小D.若“飞椅”转动的角速度变大,钢绳上的拉力大小不变√旋转过程中,游客和座椅受到重力、拉力的作用,向心力是重力和拉力的合力,故A错误;游客转动的角速度相同,根据v=ωr可知,坐在外侧的游客的旋转半径较大,线速度更大,故B正确;“飞椅”转动的角速度越大,“飞椅”做圆周运动所需的向心力越大,向心力由重力与拉力的合力提供,则钢绳上的拉力变大,钢绳与竖直方向的夹角变大,旋转半径变大,故C、D错误。6.如图是某型号无人机绕拍摄主体时做水平匀速圆周运动的示意图。已知无人机的质量为m,无人机的轨道距拍摄对象的高度为h,无人机与拍摄对象的距离为r,无人机飞行的线速度大小为v,则无人机做匀速圆周运动时A.角速度为B.所受空气作用力为mgC.向心加速度为D.周期为T=√做圆周运动的半径R=
,则角速度为ω=
,故A错误;无人机做匀速圆周运动时,向心力Fn=m
=man,解得an=
,所受空气作用力F=
,故B错误,C正确;无人机做匀速圆周运动的周期T=
,故D错误。7.(多选)如图所示,直径为d的竖直圆筒绕中心轴线以恒定的转速匀速转动。一子弹以水平速度沿圆筒直径方向从左侧射入圆筒,从右侧射穿圆筒后发现两弹孔在同一竖直线上且相距为h,重力加速度为g,则A.子弹在圆筒中的水平速度为dB.子弹在圆筒中的水平速度为2dC.圆筒转动的角速度可能为πD.圆筒转动的角速度可能为3π√√√子弹在圆筒中运动的时间与自由下落高度h的时间相同,即t=
,则v0=
,故A正确,B错误;由题意知,在此段时间内圆筒转过的圈数为半圈的奇数倍,即ωt=(2n+1)π(n=0,1,2,…),所以ω=
=(2n+1)π
(n=0,1,2,…),故C、D正确。8.(多选)如图所示,游乐园中某海盗船在外力驱动下启动,某时刻撤去驱动力,此后船自由摆动,当悬臂OA水平时,船的速度恰好为零。若A、B、C处质量相等的乘客始终相对船静止,且以相同的半径随船摆动,摆动装置(含乘客)的重心位于圆弧AC的中点B,∠AOC=60°,不计一切阻力,重力加速度大小为g,则海盗船在自由摆动过程中A.OA水平时,船对C处乘客的作用力为零B.OA水平时,B处乘客的加速度大小为aB=gC.A处乘客从图示位置运动至最低点的过程中,始终处于失重状态D.A、B处乘客分别运动至最低点时,船对乘客竖直方向的作用力大小之比为=√√设乘客质量为m,根据力的分解可知,OA水平时,船对C处乘客的作用力为F=mgcos30°,故A错误;OA水平时,B处乘客的加速度大小aB==g,故B正确;
A处乘客从题图示位置运动至最低点的过程中,当向心加速度在竖直方向的分量大于切向加速度在竖直方向的分量时,合加速度方向向上,A处乘客处于超重状态,故C错误;设整体质量为M,A处乘客运动至最低点时,根据动能定理得MgL(cos30°-cos60°)=
,在最低点,对A处乘客,有FA-mg=m,解得FA=
mg,B处乘客运动至最低点时,根据动能定理得MgL(1-cos60°)=
,在最低点,对B处乘客,有FB-mg=m,联立解得FB=2mg,可得
,故D正确。9.(2024·湖北黄冈高三模拟)如图所示,一根细线下端拴一个金属小球Q,细线穿过小孔(小孔光滑),另一端连接在金属块P上,P始终静止在水平桌面上,若不计空气阻力,小球在某一水平面内做匀速圆周运动(圆锥摆)。实际上,小球在运动过程中不可避免地受到空气阻力作用。因阻力作用,小球Q的运动轨道发生缓慢的变化(可视为一系列半径不同的圆周运动)。下列判断正确的是A.小球Q的位置越来越高B.细线的拉力变小C.小球Q运动的角速度变大D.P受到桌面的静摩擦力变大√由于小球受到空气阻力作用,线速度减小,则所需要的向心力减小,小球做近心运动,小球的位置越来越低,故A错误;设细线与竖直方向的夹角为θ,细线的拉力大小为FT,细线的长度为L,当小球做匀速圆周运动时,由重力和细线的拉力的合力提供向心力,如图所示,则有FT=
,mgtanθ=m=mω2Lsinθ,解得ω=
,由于小球受到空气阻力作用,线速度减小,则θ减小,cosθ增大,因此,细线的拉力FT减小,角速度ω减小,故B正确,C错误;对金属块P,由平衡条件知,P受到桌面的静摩擦力大小等于细线的拉力大小,则静摩擦力变小,故D错误。10.(2024·安徽黄山模拟)太极球是近年来在广大市民中较流行的一种健身器材。做该项运动时,健身者半马步站立,手持太极球拍,拍上放一橡胶太极球,健身者舞动球拍时,球却不会掉落。现将太极球简化成如图所示的平板和小球,熟练的健身者让球在竖直面内始终不脱离板而做匀速圆周运动,A为圆周的最高点,C为最低点,B、D两点与圆心O等高且在B、D处平板与水平面夹角为θ。设小球的质量为m,圆周运动的半径为R,重力加速度为g。若小球运动的周期为T=2π,则A.在A处,平板对小球的作用力大小为m
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024离婚法律文件:标准合同范例版B版
- 2024育儿嫂住家服务合同特殊技能培训范本3篇
- 2024研学合同协议
- 2025年度新型环保材料铺设打地坪合同范本3篇
- 2024聘用退休人员劳务合同范本
- 2025年度专业打印机租赁合同包含打印耗材及维护4篇
- 2025年度智能家居系统安装与维护承包合同8篇
- 2025年度生物科技出借咨询与服务协议4篇
- 2024年高端装备制造与技术转让协议
- 2024版洗车服务单位协议2篇
- 餐饮行业智慧餐厅管理系统方案
- 2025年度生物医药技术研发与许可协议3篇
- 电厂检修安全培训课件
- 殡葬改革课件
- 2024企业答谢晚宴会务合同3篇
- 双方个人协议书模板
- 车站安全管理研究报告
- 玛米亚RB67中文说明书
- 中华人民共和国文物保护法
- 沪教牛津版初中英语七年级下册全套单元测试题
- 因式分解法提公因式法公式法
评论
0/150
提交评论