实数与数轴教材_第1页
实数与数轴教材_第2页
实数与数轴教材_第3页
实数与数轴教材_第4页
实数与数轴教材_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

实数与数轴使用说明:本课件介绍了无理数的产生背景,可以在讲实数概念时告诉学生,使学生对所学内容的实际意义有所了解。同时还对实数的定义、分类以及实数轴做了介绍,还配了一些练习题供老师们使用。复习:什么叫有理数?有理数如何分类?观察下列数特点:"无理数"的由来

公元前500年,古希腊毕达哥拉斯(Pythagoras)学派的弟子希勃索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线与其一边的长度是不可公度的(若正方形边长是1,则对角线的长不是一个有理数)这一不可公度性与毕氏学派“万物皆为数”(指有理数)的哲理大相径庭。这一发现使该学派领导人惶恐、恼怒,认为这将动摇他们在学术界的统治地位。希勃索斯因此被囚禁,受到百般折磨,最后竞遭到沉舟身亡的惩处。

不可通约的本质是什么?长期以来众说纷坛,得不到正确的解释,两个不可通约的比值也一直被认为是不可理喻的数。15世纪意大利著名画家达.芬奇称之为“无理的数”,17世纪德国天文学家开普勒称之为“不可名状”的数。然而,真理毕竟是淹没不了的,毕氏学派抹杀真理才是“无理”。人们为了纪念希勃索斯这位为真理而献身的可敬学者,就把不可通约的量取名为“无理数”——这便是“无理数”的由来.

一、无理数定义:无限不循环小数叫做无理数.断以下说法是否正确?(1)无限小数都是无理数;(2)无理数都是无限小数;(3)带根号的数都是无理数。数的发展历史

数系的扩张过程以自然数为基础,德国数学家克罗内克(Kronecker,1823-1891)说“上帝创造了整数,其它一切都是人造的”。零与自然数的产生源于人类在生存活动中的原始冲动。类似于2+3=5的事实产生了加法的概念,然而2加上几会等于1呢?由此需要定义负数:一个数的“负数”即它与该数之和等于0;进而定义减法。产生零、负自然数,合称整数;

加法的重复进行产生了乘法,2×3=6就是三个2相加。然而2乘以几会等于1呢?由此需要定义倒数:一个数的“倒数”即它与该数之积等于1,进而定义除法,产生既约分数,合称有理数。

无理数是一个能恰好地描述数学特征的案例

从数学发展史看,人类对无理数的发蒙始于古希腊毕达哥拉斯(Pythagoras,公元前582-497)学派,但二千四百年后才产生包括无理数在内的实数严格定义。

乘法的重复进行产生了乘方,23就是三个2相乘,然而哪个数的平方会等于2呢?毕达哥拉斯学派提出了这个问题,边长为1的正方形的对角线的长度不是既约分数,后来用√2表示对角线的长度,无理数的概念初步形成。

关于√2不是有理数的一个证明

毕达哥拉斯学派所作:设√2是既约分数p/q,即√2=p/q,则2q2=p2,这表明p2是偶数,p也是偶数(否则若p是奇数则p2是奇数),设p=2k,得q2=2k2,于是q也是偶数,这与p/q是既约分数矛盾。

结论:“不存在这样的有理数使其平方等于2”

由于有理数可表示成有限小数或无限循环小数,人们想到用“无限不循环小数”来定义无理数,这也是直至19世纪中叶以前的实际做法。它看起来很通俗,不明白无理数奥妙的人大体也是这样理解无理数的。但这样做遇到的困难更大:关键的问题是你无法判断一个数是无限不循环的,也不能将两个无限不循环的数进行加减乘除。

启示:

每个有理数作为有长度的线段,对应着数轴上的坐标。边长为1的正方形的对角线线段也应对应数轴上的一个点,这意味着如果只有有理数,数轴上存有“空隙”——尽管有理数非常稠密。应当填补这些“空隙”使数轴成为完美的,欧几里德《几何原本》中曾记载过这一思想的雏形。

戴德金历史上的两种无理数定义戴德金的说法,一个实数是有理数的一个集合

康托的说法,一个实数是有理数的一个(柯西)序列

1874年康托还证明了无理数比有理数多得多,这也意味着,无形的、不是根式的无理数竟比直观的、根式的无理数多得多!数轴上代表有理数的点虽然是稠密的——任何两个有理数点之间恒有无数多有理数点,但是除有理数点外的“空隙”更多。“空隙”一旦填满,稠密概念发展成了连续的概念,数轴上点与实数完全对应,无理数问题画上了永远的句号。数学家所知道的无理数确实少的可怜:

知道得最多的只是各式各样的根式,这是古希腊人即已知道的;其次是π与e两个非代数数。那些比代数数多得多的无理数在哪儿?1900年数学家希尔伯特(Hilbert,1862-1943)提出著名的23个数学问题即包括了这一内容。然而,若稍微追问一句“(π+e)是无理数还是有理数”?则至今都没有严密的答案。总之:

数学家心安理得的是建立了无懈可击的实数体系,在坚实的基础上,任何闲言碎语都是不足道的。无理数所体现的完美无缺、一丝不苟的纯粹理性与无孔不入、尽人皆知的世俗应用,可谓占尽天上人间风光,正是数学的魅力之所在。二、实数的定义:有理数和无理数统称为实数.三、实数的分类:

(1)按定义分类:(2)按大小分类:例1

把下列各数写入相应的集合中:四、实数轴

我们知道数轴上的点表示的并不都是有理数,也有无理数.如果我们把所有的有理数连起来,组成的是一条断断续续的数轴,这其中的空缺就是我们刚刚学习的无理数,可见由有理数和无理数把整个数轴填充完整了,所以我们把这个数轴又称为实数轴.实数与数轴上的点是一一对应的.这其中包含着两层含义:第一,每一个实数都可以用数轴上的一个点来表示;第二,数轴上的每一个点都可以用一个实数来表示.数轴上的无理数

我们把实数表示在数轴上,最直观地表明了实数的大小,以原点为分界线,在原点的右侧,表示正数,在原点的左侧为负数,我们知道数轴上的实数从左到右是由小变大,并且数轴上的右侧的数总是比它左侧的数大,这就引出了实数比较大小的问题.显然同有理数之间的比较大小是类似的.例2、比较大小:说明:

实数的比较,需要遵循的原则是必须化成同类数才可作比较,对于一些无理数,若要化成小数,只能取其近似值,所以需要熟记一些无理数的近似值。例3、填空:(1)|3-π|=_______.

则x=______;y=______.1)在3.14,sin30°,各数中,无理数有………()

A、2个B、3个C、4个D、5个

2)下列命题中正确的个数有………()

①实数不是有理数就是无理数

②a<a+a

③212的平方根是21

④在实数范围内,非负数一定是正数⑤两个无理数之和仍是无理数

A、1个B、2个C、3个D、4个

3)当a<b<0时,=

4)若与互为相反数,则=

5)已知0<x<1,那么x、、、中,最大的数是………()A、x

B、

C、

D、6)比较下列各组数中两个数的大小:

7)当-3<a<

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论