2025届吉林省长春市九台数学九上期末预测试题含解析_第1页
2025届吉林省长春市九台数学九上期末预测试题含解析_第2页
2025届吉林省长春市九台数学九上期末预测试题含解析_第3页
2025届吉林省长春市九台数学九上期末预测试题含解析_第4页
2025届吉林省长春市九台数学九上期末预测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届吉林省长春市九台数学九上期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.二次函数y=x2-2x+4A.y=(x-1)2C.y=(x-2)22.如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是A.AC=AB B.∠C=∠BOD C.∠C=∠B D.∠A=∠B0D3.若反比例函数y=的图象经过点(2,3),则它的图象也一定经过的点是()A. B. C. D.4.已知:在△ABC中,∠A=78°,AB=4,AC=6,下列阴影部分的三角形与原△ABC不相似的是()A. B.C. D.5.如图,已知,是的中点,且矩形与矩形相似,则长为()A.5 B. C. D.66.钓鱼岛是中国的固有领土,位于中国东海,面积为4400000m2,数据4400000用科学记数法表示为()A.4.4×106 B.44×105 C.4×106 D.0.44×1077.下列图形中,既是中心对称图形,又是轴对称图形的是()A. B. C. D.8.气象台预报“铜陵市明天降水概率是75%”.据此信息,下列说法正确的是()A.铜陵市明天将有75%的时间降水 B.铜陵市明天将有75%的地区降水C.铜陵市明天降水的可能性比较大 D.铜陵市明天肯定下雨9.电影《流浪地球》一上映就获得追捧,第一天票房收入约8亿元,第三天票房收入达到了11.52亿元,设第一天到第三天票房收入平均每天增长的百分率为x,则可列方程()A.8(1+x)=11.52 B.8(1+2x)=11.52C.8(1+x)=11.52 D.8(1﹣x)=11.5210.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4 B.4 C.6 D.411.把Rt△ABC各边的长度都扩大3倍得到Rt△A′B′C′,对应锐角A,A′的正弦值的关系为()A.sinA=3sinA′B.sinA=sinA′C.3sinA=sinA′D.不能确定12.用配方法解方程配方正确的是()A. B. C. D.二、填空题(每题4分,共24分)13.抛物线y=x2﹣4x的对称轴为直线_____.14.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,将Rt△ABC绕点A逆时针旋转60°得到△ADE,则BC边扫过图形的面积为_____.15.如图,在A时测得某树的影长为4米,在B时测得该树的影长为9米,若两次日照的光线互相垂直,则该树的高度为___________米.16.已知二次函数的图象经过原点,则的值为_______.17.在一个不透明的袋子中装有8个红球和16个白球,它们只有颜色上的区别,现从袋中取走若干个红球,并放入相同数量的白球,搅拌均匀后,要使从袋中任意摸出一个球是红球的概率是,则取走的红球为_______个.18.将抛物线先向右平移1个单位长度,再向上平移2个单位长度,得到的抛物线的解析式是______.三、解答题(共78分)19.(8分)“江畔”礼品店在十一月份从厂家购进甲、乙两种不同礼品.购进甲种礼品共花费1500元,购进乙种礼品共花费1050元,购进甲种礼品数量是购进乙种礼品数量的2倍,且购进一件乙种礼品比购进一件甲种礼品多花20元.(1)求购进一件甲种礼品、一件乙种礼品各需多少元;(2)元旦前夕,礼品店决定再次购进甲、乙两种礼品共50个.恰逢该厂家对两种礼品的价格进行调整,一件甲种礼品价格比第一次购进时提高了30%,件乙种礼品价格比第次购进时降低了10元,如果此次购进甲、乙两种礼品的总费用不超过3100元,那么这家礼品店最多可购进多少件甲种礼品?20.(8分)在平面直角坐标系中,抛物线与轴交于点,.(1)若,求的值;(2)过点作与轴平行的直线,交抛物线于点,.当时,求的取值范围.21.(8分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=10,CD=8,求线段AE的长.22.(10分)如图,已知是的外接圆,圆心在的外部,,,求的半径.23.(10分)如图,的直径为,点在上,点,分别在,的延长线上,,垂足为,.(1)求证:是的切线;(2)若,,求的长.24.(10分)“校园读诗词诵经典比赛”结束后,评委刘老师将此次所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图,部分信息如下图:扇形统计图频数直方图(1)参加本次比赛的选手共有________人,参赛选手比赛成绩的中位数在__________分数段;补全频数直方图.(2)若此次比赛的前五名成绩中有名男生和名女生,如果从他们中任选人作为获奖代表发言,请利用表格或画树状图求恰好选中男女的概率.25.(12分)小明和小亮两人一起玩投掷一个普通正方体骰子的游戏.(1)说出游戏中必然事件,不可能事件和随机事件各一个;(2)如果两个骰子上的点数之积为奇数,小明胜,否则小亮胜,你认为这个游戏公平吗?如果不公平,谁获胜的可能性较大?请说明理由.请你为他们设计一个公平的游戏规则.26.“2019大洋湾盐城马拉松”的赛事共有三项:A,“全程马拉松”、B,“半程马拉松”、C.“迷你健身跑”,小明和小刚参与了该项赛事的志愿者服务工作,组委会随机将志愿者分配到三个项目组.(1)小明被分配到“迷你健身跑”项目组的概率为;(2)求小明和小刚被分配到不同项目组的概率.

参考答案一、选择题(每题4分,共48分)1、B【解析】试题分析:设原正方形的边长为xm,依题意有:(x﹣1)(x﹣2)=18,故选C.考点:由实际问题抽象出一元二次方程.2、B【解析】先利用垂径定理得到弧AD=弧BD,然后根据圆周角定理得到∠C=∠BOD,从而可对各选项进行判断.【详解】解:∵直径CD⊥弦AB,∴弧AD=弧BD,∴∠C=∠BOD.故选B.【点睛】本题考查了垂径定理和圆周角定理,垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3、A【详解】解:根据题意得k=2×3=6,所以反比例函数解析式为y=,∵﹣3×(﹣2)=6,2×(﹣3)=﹣6,3×(﹣2)=﹣6,﹣2×3=﹣6,∴点(﹣3,﹣2)在反比例函数y=的图象上.故选A.【点睛】本题考查反比例函数图象上点的坐标特征.4、C【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【详解】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选:C.【点睛】本题主要考查了相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.5、B【分析】根据相似多边形的性质列出比例式,计算即可.【详解】解:∵矩形ABDC与矩形ACFE相似,∴,∵,是的中点,∴AE=5∴,解得,AC=5,故选B.【点睛】本题考查的是相似多边形的性质,掌握相似多边形的对应边的比相等是解题的关键.6、A【解析】试题分析:根据科学记数法是把一个大于10的数表示成a×10n的形式(其中1≤a<10,n是正整数).确定a×10n(1≤|a|<10,n为整数),1100000有7位,所以可以确定n=7-1=6,再表示成a×10n的形式即可,即1100000=1.1×2.故答案选A.考点:科学记数法.7、B【解析】根据中心对称图形的定义“是指在平面内,把一个图形绕着某个点旋转,如果旋转后的图形能与原来的图形重合的图形”和轴对称图形的定义“是指平面内,一个图形沿着一条直线折叠,直线两旁的部分能够完全重合的图形”逐项判断即可.【详解】A、既不是中心对称图形,也不是轴对称图形,此项不符题意B、既是中心对称图形,又是轴对称图形,此项符合题意C、是轴对称图形,但不是中心对称图形,此项不符题意D、是中心对称图形,但不是轴对称图形,此项不符题意故选:B.【点睛】本题考查了中心对称图形的定义和轴对称图形的定义,这是常考点,熟记定义是解题关键.8、C【分析】根据概率表示某事情发生的可能性的大小,依次分析选项可得答案.【详解】解:根据概率表示某事情发生的可能性的大小,分析可得:

A、铜陵市明天将有75%的时间降水,故此选项错误;

B、铜陵市明天将有75%的地区降水,故此选项错误;

C、明天降水的可能性为75%,比较大,故此选项正确;

D、明天肯定下雨,故此选项错误;

故选:C.【点睛】此题主要考查了概率的意义,关键是理解概率表示随机事件发生的可能性大小:可能发生,也可能不发生.9、C【分析】设平均每天票房的增长率为,根据第一天票房收入约8亿元,第三天票房收入达到了11.52亿元,即可得出关于的一元二次方程.【详解】解:设平均每天票房的增长率为,根据题意得:.故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.10、B【分析】由已知条件可得,可得出,可求出AC的长.【详解】解:由题意得:∠B=∠DAC,∠ACB=∠ACD,所以,根据“相似三角形对应边成比例”,得,又AD是中线,BC=8,得DC=4,代入可得AC=,故选B.【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答.11、B【解析】根据相似三角形的性质,可得∠A=∠A′,根据锐角三角函数的定义,可得答案.【详解】解:由Rt△ABC各边的长度都扩大3倍的Rt△A′B′C′,得

Rt△ABC∽Rt△A′B′C′,

∠A=∠A′,sinA=sinA′

故选:B.【点睛】本题考查了锐角三角函数的定义,利用相似三角形的性质得出∠A=∠A′是解题关键.12、A【分析】本题可以用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.【详解】解:,,∴,.故选:.【点睛】此题考查配方法的一般步骤:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.二、填空题(每题4分,共24分)13、x=1.【分析】用对称轴公式直接求解.【详解】抛物线y=x1﹣4x的对称轴为直线x==﹣=1.故答案为x=1.【点睛】本题主要考查二次函数的性质,掌握二次函数的对称轴公式x=是本题的解题关键..14、2π【分析】根据BC边扫过图形的面积是:S扇形DAB+S△ABC-S△ADE-S扇形ACE,分别求得:扇形BAD的面积、S△ABC以及扇形CAE的面积,即可求解.【详解】∵∠C=90°,∠BAC=60°,AC=2,∴AB=4,扇形BAD的面积是:=,在直角△ABC中,BC=AB•sin60°=4×=2,AC=2,∴S△ABC=S△ADE=AC•BC=×2×2=2.扇形CAE的面积是:=,则阴影部分的面积是:S扇形DAB+S△ABC﹣S△ADE﹣S扇形ACE=﹣=2π.故答案为:2π.【点睛】本题考查了扇形的面积的计算,正确理解阴影部分的面积是:S扇形DAB+S△ABC-S△ADE-S扇形ACE是关键.15、6【解析】根据题意,画出示意图,易得:Rt△EDC∽Rt△CDF,进而可得,代入数据可得答案.【详解】如图,在中,米,米,易得,,即,米.故答案为:6.【点睛】本题通过投影的知识结合三角形的相似,求解高的大小,是平行投影性质在实际生活中的应用.16、2;【分析】本题中已知了二次函数经过原点(1,1),因此二次函数与y轴交点的纵坐标为1,即m(m-2)=1,由此可求出m的值,要注意二次项系数m不能为1.【详解】根据题意得:m(m−2)=1,∴m=1或m=2,∵二次函数的二次项系数不为零,所以m=2.故填2.【点睛】本题考查二次函数图象上点的坐标特征,需理解二次函数与y轴的交点的纵坐标即为常数项的值.17、1【解析】设取走的红球有x个,根据概率公式可得方程,解之可得答案.【详解】设取走的红球有x个,根据题意,得:,解得:x=1,即取走的红球有1个,故答案为:1.【点睛】此题主要考查了概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.18、【分析】先确定抛物线y=x1的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移所得对应点的坐标为(1,1),然后根据顶点式写出新抛物线解析式.【详解】解:抛物线y=x1的顶点坐标为(0,0),点(0,0)先向右平移1个单位长度,再向上平移1个单位长度所得对应点的坐标为(1,1),所以新抛物线的解析式为y=(x-1)1+1故答案为y=(x-1)1+1.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.三、解答题(共78分)19、(1)购进一件甲种礼品需要50元,一件乙种礼品需70元;(2)最多可购进20件甲种礼品.【分析】(1)设购进一件甲种礼品需x元,则一件乙种礼品需(x+20)元.根据题意得:,解方程可得;(2)设购进甲m件,则购进乙件.根据题意得:,解不等式可得.【详解】解:(1)设购进一件甲种礼品需x元,则一件乙种礼品需(x+20)元.根据题意得:解得:x=50经检验,x=50是原方程的解,且符合题意.=70元.答:购进一件甲种礼品需要50元,一件乙种礼品需70元.(2)设购进甲m件,则购进乙件.根据题意得:解得:答:最多可购进20件甲种礼品.【点睛】考核知识点:分式方程应用.根据销售价格关系列出方程和不等式是关键.20、(1);(2)的取值范围为或.【分析】(1)先求出抛物线的对称轴,利用对称性求出A、B的坐标,然后把点代入抛物线,即可求出m的值;(2)根据根的判别式得到m的范围,再结合,然后分为:①开口向上,②开口向下,两种情况进行分析,即可得到答案.【详解】解:(1)抛物线对称轴为直线.∴点关于直线对称,∵抛物线与轴交于点,将代入中,得,∴;(2)抛物线与轴有两个交点∴,即,解得:或;①若,开口向上,如图,当时,有,解得:;∵或,∴;②若,开口向下,如图,当时,有,解得:,∵或,∴;综上所述,的取值范围为:或.【点睛】本题考查了二次函数的性质,二次函数与坐标轴的交点问题,根的判别式,解题的关键是掌握二次函数的性质,利用数形结合的思想和分类讨论的思想进行解题.21、1【分析】连接OC,利用直径AB=10,则OC=OA=5,再由CD⊥AB,根据垂径定理得CE=DE=CD=4,然后利用勾股定理计算出OE,再利用AE=OA-OE进行计算即可.【详解】连接OC,如图,∵AB是⊙O的直径,AB=10,∴OC=OA=5,∵CD⊥AB,∴CE=DE=CD=×8=4,在Rt△OCE中,OC=5,CE=4,∴OE==3,∴AE=OA﹣OE=5﹣3=1.【点睛】本题考查了垂径定理,掌握垂径定理及勾股定理是关键.22、4【解析】已知△ABC是等腰三角形,根据等腰三角形的性质,作于点,则直线为的中垂线,直线过点,在Rt△OBH中,用半径表示出OH的长,即可用勾股定理求得半径的长.【详解】作于点,则直线为的中垂线,直线过点,,,,即,.【点睛】考查垂径定理以及勾股定理,掌握垂径定理是解题的关键.23、(1)见解析;(2)【分析】(1)连接OC,根据三角形的内角和得到∠EDC+∠ECD=90°,根据等腰三角形的性质得到∠A=∠ACO,得到∠OCD=90°,于是得到结论;

(2)根据已知条件得到OC=OB=AB=2,根据勾股定理即可得到结论.【详解】(1)证明:连接OC,

∵DE⊥AE,

∴∠E=90°,

∴∠EDC+∠ECD=90°,

∵∠A=∠CDE,

∴∠A+∠DCE=90°,

∵OC=OA,

∴∠A=∠ACO,

∴∠ACO+∠DCE=90°,

∴∠OCD=90°,

∴OC⊥CD,

∴CD是⊙O的切线;

(2)解:∵AB=4,BD=3,

∴OC=OB=AB=2,

∴OD=2+3=5,

∴CD===.【点睛】本题考查了切线的判定和性质,勾股定理,等腰三角形的性质,平角的定义,熟练掌握切线的判定定理是解题的关键.24、(1)50;;补图见解析;(2).【分析】(1)利用比赛成绩在的人数除以所占的百分比即可求出参加本次比赛的选手的人数,然后利用总人数乘比赛成绩在所占的百分比,即可求出成绩在的人数,从而求出成绩在的人数和成绩在的人数,最后根据中位数的定义即可求出中位数;(2)根据题意,画出树状图,然后根据概率公式求概率即可.【详解】解:(1),所以参加本次比赛的选手共有人,频数直方图中“”这两组的人数为人,所以频数直方图中“”这一组的人数为人“”这一组的人数为人中位数是第和第位选手成绩的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论