版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖北省通城市隽水镇南门中学数学九上期末复习检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,的直径,是上一点,点平分劣弧,交于点,,则图中阴影部分的面积等于()A. B. C. D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形 B.平行四边形 C.正五边形 D.圆3.如图,分别与相切于点,为上一点,,则()A. B. C. D.4.如图,将矩形沿对角线折叠,使落在处,交于,则下列结论不一定成立的是()A. B.C. D.5.如图所示,在边长为1的小正方形网格中,两个三角形是位似图形,则它们的位似中心是()A.点O B.点P C.点M D.点N6.下列方程中是关于的一元二次方程的是()A. B. C., D.7.把二次函数y=2x2的图象向右平移3个单位,再向上平移2个单位后的函数关系式是()A. B.C. D.8.sin45°的值是()A. B. C. D.9.在Rt△ABC中,∠C=90°,sinA=,则∠A的度数是()A.30° B.45° C.60° D.90°10.如图,在Rt△ABC中,∠ACB=90°,AC=24,AB=25,CD是斜边AB上的高,则cos∠BCD的值为()A. B. C. D.11.如图,在△ABC中,点D在AB上、点E在AC上,若∠A=60°,∠B=68°,AD·AB=AE·AC,则∠ADE等于A.52° B.62° C.68° D.72°12.如图物体由两个圆锥组成,其主视图中,.若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A.2 B. C. D.二、填空题(每题4分,共24分)13.计算:×=______.14.如图,在▱ABCD中,AB=6,BC=6,∠D=30°,点E是AB边的中点,点F是BC边上一动点,将△BEF移沿直线EF折叠,得到△GEF,当FG∥AC时,BF的长为_____.15.关于的一元二次方程有两个不相等的实数根,则的取值范围是__________.16.已知函数(为常数),若从中任取值,则得到的函数是具有性质“随增加而减小”的一次函数的概率为___________.17.正方形的边长为,点是正方形的中心,将此正方形沿直线滚动(无滑动),且每一次滚动的角度都等于90°.例如:点不动,滚动正方形,当点上方相邻的点落在直线上时为第1次滚动.如果将正方形滚动2020次,那么点经过的路程等于__________.(结果不取近似值)18.圆心角是60°且半径为2的扇形面积是______三、解答题(共78分)19.(8分)学生会要举办一个校园书画艺术展览会,为国庆献礼,小华和小刚准备将长AD为400cm,宽AB为130cm的矩形作品四周镶上彩色纸边装饰,如图所示,两人在设计时要求内外两个矩形相似,矩形作品面积是总面积的,他们一致认为上下彩色纸边要等宽,左右彩色纸边要等宽,这样效果最好,请你帮助他们设计彩色纸边宽度.20.(8分)如图,抛物线经过点,请解答下列问题:求抛物线的解析式;抛物线的顶点为点,对称轴与轴交于点,连接,求的长.点在抛物线的对称轴上运动,是否存在点,使的面积为,如果存在,直接写出点的坐标;如果不存在,请说明理由.21.(8分)一位同学想利用树影测量树高,他在某一时间测得长为1m的竹竿影长0.8m,但当他马上测量树影时,因树靠近一幢建筑物,影子不完全落在地面上,有一部分影子在墙上,如图所示,他先测得留在墙上的影高为1.2m,又测得地面部分的影长为5m,测算一下这棵树的高时多少?22.(10分)综合与实践—探究正方形旋转中的数学问题问题情境:已知正方形中,点在边上,且.将正方形绕点顺时针旋转得到正方形(点,,,分别是点,,,的对应点).同学们通过小组合作,提出下列数学问题,请你解答.特例分析:(1)“乐思”小组提出问题:如图1,当点落在正方形的对角线上时,设线段与交于点.求证:四边形是矩形;(2)“善学”小组提出问题:如图2,当线段经过点时,猜想线段与满足的数量关系,并说明理由;深入探究:(3)请从下面,两题中任选一题作答.我选择题.A.在图2中连接和,请直接写出的值.B.“好问”小组提出问题:如图3,在正方形绕点顺时针旋转的过程中,设直线交线段于点.连接,并过点作于点.请在图3中补全图形,并直接写出的值.23.(10分)为了备战初三物理、化学实验操作考试,某校对初三学生进行了模拟训练,物理、化学各有3个不同的操作实验题目,物理题目用序号①、②、③表示,化学题目用字母a、b、c表示,测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定,第一次抽签确定物理实验题目,第二次抽签确定化学实验题目.(1)小李同学抽到物理实验题目①这是一个事件(填“必然”、“不可能”或“随机”).(2)小张同学对物理的①、②和化学的c号实验准备得较好,请用画树形图(或列表)的方法,求他同时抽到两科都准备得较好的实验题目的概率.24.(10分)如图,抛物线()与双曲线相交于点、,已知点坐标,点在第三象限内,且的面积为3(为坐标原点).(1)求实数、、的值;(2)在该抛物线的对称轴上是否存在点使得为等腰三角形?若存在请求出所有的点的坐标,若不存在请说明理由.(3)在坐标系内有一个点,恰使得,现要求在轴上找出点使得的周长最小,请求出的坐标和周长的最小值.25.(12分)已知:在△ABC中,点D、点E分别在边AB、AC上,且DE//BC,BE平分∠ABC.(1)求证:BD=DE;(2)若AB=10,AD=4,求BC的长.26.如图,在ABC中,点D,E分别在边AC,AB上,且AE·AB=AD·AC,连接DE,BD.(1)求证:ADE~ABC.(2)若点E为AB为中点,AD:AE=6:5,ABC的面积为50,求BCD面积.
参考答案一、选择题(每题4分,共48分)1、A【分析】根据垂径定理的推论和勾股定理即可求出BC和AC,然后根据S阴影=S半圆O-S△ABC计算面积即可.【详解】解:∵直径∴OB=OD=,∠ACB=90°∵点平分劣弧,∴BC=2BE,OE⊥BC,OE=OD-DE=4在Rt△OBE中,BE=∴BC=2BE=6根据勾股定理:AC=∴S阴影=S半圆O-S△ABC==故选A.【点睛】此题考查的是求不规则图形的面积,掌握垂径定理与勾股定理的结合和半圆的面积公式、三角形的面积公式是解决此题的关键.2、D【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【详解】解:A、等边三角形是轴对称图形,不是中心对称图形,故A错误;B、平行四边形不是轴对称图形,是中心对称图形,故B错误;C、正五边形是轴对称图形,不是中心对称图形,故C错误;D、圆是轴对称图形,也是中心对称图形,故D正确.故选:D.【点睛】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3、A【分析】连接OA,OB,根据切线的性质定理得到∠OAP=90°,∠OBP=90°,根据四边形的内角和等于360°求出∠AOB,最后根据圆周角定理解答.【详解】解:连接OA,OB,
∵PA,PB分别与⊙O相切于A,B点,
∴∠OAP=90°,∠OBP=90°,
∴∠AOB=360°-90°-90°-66°=114°,
由圆周角定理得,∠C=∠AOB=57°,
故选:A.【点睛】本题考查的是切线的性质、圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半是解题的关键.4、C【解析】分析:主要根据折叠前后角和边相等对各选项进行判断,即可选出正确答案.详解:A、BC=BC′,AD=BC,∴AD=BC′,所以A正确.B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB,所以B正确.D、∵sin∠ABE=,∵∠EBD=∠EDB∴BE=DE∴sin∠ABE=.由已知不能得到△ABE∽△CBD.故选C.点睛:本题可以采用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.5、B【分析】根据位似变换的定义:对应点的连线交于一点,交点就是位似中心.即位似中心一定在对应点的连线上.【详解】解:位似图形的位似中心位于对应点连线所在的直线上,点M、N为对应点,所以位似中心(如图)在M、N所在的直线上,点P在直线MN上,所以点P为位似中心.
故选:B.【点睛】此题主要考查了位似变换的性质,利用位似图形的位似中心位于对应点连线所在的直线上,点M、N为对应点,得出位似中心在M、N所在的直线上是解题关键.6、A【分析】根据一元二次方程的定义解答.【详解】A、是一元二次方程,故A正确;
B、有两个未知数,不是一元二次方程,故B错误;
C、是分式方程,不是一元二次方程,故C正确;
D、a=0时不是一元二次方程,故D错误;
故选:A.【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是1.7、A【解析】将二次函数的图象向右平移3个单位,再向上平移2个单位后的函数关系式为:.故选A.8、B【解析】将特殊角的三角函数值代入求解.【详解】解:sin45°=.故选:B.【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.9、C【解析】试题分析:根据特殊角的三角函数值可得:∠A=60°.10、B【分析】根据同角的余角相等得∠BCD=∠A,利用三角函数即可解题.【详解】解:在中,∵,,是斜边上的高,∴∠BCD=∠A(同角的余角相等),∴===,故选B.【点睛】本题考查了三角函数的余弦值,属于简单题,利用同角的余角相等得∠BCD=∠A是解题关键.11、A【分析】先证明△ADE∽△ACB,根据对应角相等即可求解.【详解】∵AD·AB=AE·AC,∴,又∠A=∠A,∴△ADE∽△ACB,∴∠ADE=∠C=180°-∠A-∠B=52°,故选A.【点睛】此题主要考查相似三角形的性质,解题的关键是熟知相似三角形的判定定理.12、D【分析】先证明△ABD为等腰直角三角形得到∠ABD=45°,BD=AB,再证明△CBD为等边三角形得到BC=BD=AB,利用圆锥的侧面积的计算方法得到上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,从而得到下面圆锥的侧面积.【详解】∵∠A=90°,AB=AD,∴△ABD为等腰直角三角形,∴∠ABD=45°,BD=AB,∵∠ABC=105°,∴∠CBD=60°,而CB=CD,∴△CBD为等边三角形,∴BC=BD=AB,∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,∴下面圆锥的侧面积=×1=.故选D.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰直角三角形和等边三角形的性质.二、填空题(每题4分,共24分)13、1.【解析】×==1,故答案为1.14、或【分析】由平行四边形的性质得出∠B=∠D=30°,CD=AB=6,AD=BC=6,作CH⊥AD于H,则CH=CD=3,DH=CH=3=AD,得出AH=DH,由线段垂直平分线的性质得出CA=CD=AB=6,由等腰三角形的性质得出∠ACB=∠B=30°,由平行线的性质得出∠BFG=∠ACB=30°,分两种情况:①作EM⊥BF于M,在BF上截取EN=BE=3,则∠ENB=∠B=30°,由直角三角形的性质得出EM=BE=,BM=NM=EM=,得出BN=2BM=3,再证出FN=EN=3,即可得出结果;②作EM⊥BC于M,在BC上截取EN=BE=3,连接EN,则∠ENB=∠B=30°,得出EN∥AC,EM=BE=,BM=NM=EM=,BN=2BM=3,证出FG∥EN,则∠G=∠GEN,证出∠GEN=∠ENB=∠B=∠G=30°,推出∠BEN=120°,得出∠BEG=120°﹣∠GEN=90°,由折叠的性质得∠BEF=∠GEF=∠BEG=45°,证出∠NEF=∠NFE,则FN=EN=3,即可得出结果.【详解】解:∵四边形ABCD是平行四边形,∴∠B=∠D=30°,CD=AB=6,AD=BC=6,作CH⊥AD于H,则CH=CD=3,DH=CH=3=AD,∴AH=DH,∴CA=CD=AB=6,∴∠ACB=∠B=30°,∵FG∥AC,∴∠BFG=∠ACB=30°,∵点E是AB边的中点,∴BE=3,分两种情况:①作EM⊥BF于M,在BF上截取EN=BE=3,连接EN,如图1所示:则∠ENB=∠B=30°,∴EM=BE=,BM=NM=EM=,∴BN=2BM=3,由折叠的性质得:∠BFE=∠GFE=15°,∵∠NEF=∠ENB﹣∠BFE=15°=∠BFE,∴FN=EN=3,∴BF=BN+FN=3+3;②作EM⊥BC于M,在BC上截取EN=BE=3,连接EN,如图2所示:则∠ENB=∠B=30°,∴EN∥AC,EM=BE=,BM=NM=EM=,∴BN=2BM=3,∵FG∥AC,∴FG∥EN,∴∠G=∠GEN,由折叠的性质得:∠B=∠G=30°,∴∠GEN=∠ENB=∠B=∠G=30°,∵∠BEN=180°﹣∠B﹣∠ENB=180°﹣30°﹣30°=120°,∴∠BEG=120°﹣∠GEN=120°﹣30°=90°,由折叠的性质得:∠BEF=∠GEF=∠BEG=45°,∴∠NEF=∠NEG+∠GEF=30°+45°=75°,∠NFE=∠BEF+∠B=45°+30°=75°,∴∠NEF=∠NFE,∴FN=EN=3,∴BF=BN﹣FN=3﹣3;故答案为:或.【点睛】本题考查了翻折变换的性质、平行四边形的性质、直角三角形的性质、线段垂直平分线的性质、等腰三角形的性质等知识;掌握翻折变换的性质和等腰三角形的性质是解答本题的关键.15、【分析】根据根的判别式即可求出答案;【详解】解:由题意可知:解得:故答案为:【点睛】本题考查一元二次方程根的判别式,解题的关键是熟练掌握一元二次方程根的判别式并应用.16、【分析】根据“随增加而减小”可知,解出k的取值范围,然后根据概率公式求解即可.【详解】由“随增加而减小”得,解得,∴具有性质“随增加而减小”的一次函数的概率为故答案为:.【点睛】本题考查了一次函数的增减性,以及概率的计算,熟练掌握一次函数增减性与系数的关系和概率公式是解题的关键.17、【分析】根据题意,画出图形,求出每次滚动点O的运动路程乘滚动次数即可求出结论.【详解】解:如下图所示,∵正方形的边长为∴AB=AD,BO=∴BD=cm∴BO=cm∵每一次滚动的角度都等于90°∴每一次滚动,点O的运动轨迹为以90°为圆心角,半径为cm的弧长∴点经过的路程为=故答案为:.【点睛】此题考查的是求一个点在运动过程中经过的路程,掌握正方形的性质和弧长公式是解决此题的关键.18、【解析】由扇形面积公式得:S=故答案是:.三、解答题(共78分)19、上下彩色纸边宽为13cm,左右彩色纸边宽为1cm.【分析】由内外两个矩形相似可得,设A′B′=13x,根据矩形作品面积是总面积的列方程可求出x的值,进而可得答案.【详解】∵AB=130,AD=10,∴,∵内外两个矩形相似,∴,∴设A′B′=13x,则A′D′=1x,∵矩形作品面积是总面积的,∴,解得:x=±12,∵x=﹣12<0不合题意,舍去,∴x=12,∴上下彩色纸边宽为(13x﹣130)÷2=13,左右彩色纸边宽为(1x﹣10)÷2=1.答:上下彩色纸边宽为13cm,左右彩色纸边宽为1cm.【点睛】本题考查相似多边形的性质,相似多边形的对应角相等,对应边成比例;根据相似多边形的性质得出A′B′与A′D′的比是解题关键.20、(1)y=-x2+2x+3;(2)2;(3)存在点F,点F(1,2)或(1,-2)【分析】(1)利用待定系数法即可求出结论;(2)先求出顶点D的坐标,然后分别求出BE和DE的长,利用勾股定理即可求出结论;(3)先求出BC的长,然后根据三角形的面积公式即可求出点F的纵坐标,从而求出结论.【详解】解:(1)∵抛物线y=ax2+2x+c经过点A(0,3),B(-1,0),∴将A(0,3),B(-1,0)代入得:,解得:则抛物线解析式为y=-x2+2x+3;(2)y=-x2+2x+3=-(x-1)2+4由D为抛物线顶点,得到D(1,4),∵
对称轴与
x
轴交于点E
,∴
DE=4,OE=1
,∵
B(﹣1,0),∴
BO=1,∴
BE=2,在
RtBED
中,根据勾股定理得:
BD==2(3)抛物线的对称轴为直线x=1由对称性可得:点C的坐标为(3,0)∴BC=3-(-1)=4∵的面积为,∴BC·=4解得:=2或-2∴点F的坐标为(1,2)或(1,-2)即存在点F,点F(1,2)或(1,-2)【点睛】此题考查的是二次函数的综合大题,掌握利用待定系数法求二次函数解析式、勾股定理和三角形的面积公式是解决此题的关键.21、树高为7.45米【分析】先求出墙上的影高CD落在地面上时的长度,再设树高为h,根据同一时刻物高与影长成正比列出关系式求出h的值即可.【详解】设墙上的影高CD落在地面上时的长度为xm,树高为hm,∵某一时刻测得长为1m的竹竿影长为0.8m,墙上的影高CD为1.2m,∴,解得x=0.96,∴树的影长为:0.96+5=5.96(m),∴,解得h=7.45(m).∴树高为7.45米.【点睛】本题考查了相似三角形的应用,解答此题的关键是正确求出树的影长,这是此题的易错点.22、(1)见解析;(2);(3)A.,B..【分析】(1)根据旋转性质证得,从而证得绪论;(2)连接、,过点作,根据旋转性质结合三角形三线合一的性质证得,再证得四边形是矩形,从而求得结论;(3)A.设,根据旋转性质结合两边对应成比例且夹角相等证得,利用相似三角形对应边成比例再结合勾股定理即可求得答案;B.作交直线于点,根据旋转性质利用AAS证得,证得OP是线段的中垂线,根据旋转性质结合两边对应成比例且夹角相等证得,利用相似三角形对应高的比等于相似比再结合勾股定理即可求得答案;【详解】(1)由题意得:,,由旋转性质得:,∵四边形是矩形(2)连接、,过点作于N,由旋转得:,∵,,∵ON⊥D,∠=∠,∴四边形是矩形,∴,∴;(3)A.如图,连接,,,由旋转的性质得:∠BO=∠,BO=O,,∴,∴,,,设,则,B.如图,过点作AG∥交直线于点G,过点O作交直线于点,连接OP,∵AG∥,,四边形是正方形,由旋转可知:,,,,,,,,,,,,在和中,,,又∵,,,,,,,又∵,,,,,设,则,,在中,由勾股定理可得:,.【点睛】本题考查四边形综合题、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质、、勾股定理、矩形的性质、线段的垂直平分线的性质和判定等知识,解题的关键是准确寻找全等三角形解决问题.23、(1)随机;(2)P(同时抽到两科都准备得较好)=.【分析】(1)根据三种事件的特点,即可确定答案;(2)先画出树状图,即可快速求出所求事件的概率.【详解】解:(1)由题意可知,小李同学抽到物理实验题目①这是一个随机事件,故答案为:随机;(2)树状图如下图所示:则P(同时抽到两科都准备得较好)=.【点睛】本题考查了求概率的列表法与树状图法,弄清题意,画出树状图或正确的列表是解答本题的关键.24、(1),;(1)存在,,,,,;(3)【分析】(1)由点A在双曲线上,可得k的值,进而得出双曲线的解析式.设(),过A作AP⊥x轴于P,BQ⊥y轴于Q,直线BQ和直线AP相交于点M.根据=3解方程即可得出k的值,从而得出点B的坐标,把A、B的坐标代入抛物线的解析式即可得到结论;(1)抛物线对称轴为,设,则可得出;;.然后分三种情况讨论即可;(3)设M(x,y).由MO=MA=MB,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《田径竞赛组织》课件
- 住房公积金买卖二手房合同
- 体育馆房产代理合同模板
- 港口码头倒水泥板施工合同
- 车站勤杂工招聘合同
- 影剧院改造施工协议
- 知识产权合同执行填空题
- 外墙安全施工技术协议
- 资产过户偿债合同
- 渔业院墙施工合同
- 中级钻探工题库真题及答案四
- 《保持乐观心态》课件
- 2024年中国电信广东公司招聘笔试参考题库含答案解析
- 2024年中国华电集团招聘笔试参考题库含答案解析
- 中国心血管病预防指南(2017)
- 空调维保投标方案(技术方案)
- 【教学创新大赛】《数字电子技术》教学创新成果报告
- 咖啡因提取的综合性实验教学
- GONE理论视角下宜华生活财务舞弊案例分析
- 初中语文默写竞赛方案
- 2023电力建设工程监理月报范本
评论
0/150
提交评论