版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省深圳市罗湖区罗湖中学2025届九年级数学第一学期期末达标检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.袋中装有除颜色外其他完全相同的4个小球,其中3个红色,一个白色,从袋中任意地摸出两个球,这两个球颜色相同的概率是()A. B. C. D.2.如图,在△ABC中,∠B=80°,∠C=40°,直线l平行于BC.现将直线l绕点A逆时针旋转,所得直线分别交边AB和AC于点M、N,若△AMN与△ABC相似,则旋转角为()A.20° B.40° C.60° D.80°3.下列方程中,有两个不相等的实数根的是()A.x2﹣x﹣1=0 B.x2+x+1=0 C.x2+1=0 D.x2+2x+1=04.如图所示,是二次函数y=ax2﹣bx+2的大致图象,则函数y=﹣ax+b的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.如图,⊙O是正方形ABCD与正六边形AEFCGH的外接圆.则正方形ABCD与正六边形AEFCGH的周长之比为()A.∶3 B.∶1 C.∶ D.1∶6.如图,在中,,且DE分别交AB,AC于点D,E,若,则△和△的面积之比等于()A. B. C. D.7.若二次根式在实数范围内有意义,则x的取值范围是A.x≤ B.x≥ C.x≤ D.x≥8.在同一平面直角坐标系中,函数y=x﹣1与函数的图象可能是A. B. C. D.9.已知二次函数的图像与x轴没有交点,则()A. B. C. D.10.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互增了182件.如果全组共有x名同学,则根据题意列出的方程是().A.x(x+1)=182 B.x(x+1)=182×C.x(x-1)=182 D.x(x-1)=182×211.将抛物线向右平移一个单位,向上平移2个单位得到抛物线A. B. C. D.12.方程2x(x﹣5)=6(x﹣5)的根是()A.x=5 B.x=﹣5 C.=﹣5,=3 D.=5,=3二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中有两点和,以原点为位似中心,相似比为,把线段缩短为线段,其中点与点对应,点与点对应,且在y轴右侧,则点的坐标为________.14.如图,已知A(5,0),B(4,4),以OA、AB为边作▱OABC,若一个反比例函数的图象经过C点,则这个函数的解析式为_____.15.某同学用描点法y=ax2+bx+c的图象时,列出了表:x…﹣2﹣1012…y…﹣11﹣21﹣2﹣5…由于粗心,他算错了其中一个y值,则这个错误的y值是_______.16.如图,在⊙O中,弦AB,CD相交于点P,∠A=42°,∠APD=77°,则∠B=_____°.17.已知线段厘米,厘米,线段c是线段a和线段b的比例中项,线段c的长度等于________厘米.18.若一个圆锥的底面圆的周长是cm,母线长是,则该圆锥的侧面展开图的圆心角度数是_____.三、解答题(共78分)19.(8分)如图,在边长为4的正方形ABCD中,∠EDF=90°,点E在边AB上且不与点A重合,点F在边BC的延长线上,DE交AC于Q,连接EF交AC于P(1)求证:△ADE≌△CDF;(2)求证:PE=PF;(3)当AE=1时,求PQ的长.20.(8分)随着通讯技术的迅猛发展,人与人之间的沟通方式更多样、便捷某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了多少名学生?在扇形统计图中,表示""的扇形圆心角的度数是多少;(2)将条形统计图补充完整;(3)该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生大约有多少名?(4)某天甲、乙两名同学都想从“微信"、""、“电话"三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.21.(8分)如图,在淮河的右岸边有一高楼,左岸边有一坡度的山坡,点与点在同一水平面上,与在同一平面内.某数学兴趣小组为了测量楼的高度,在坡底处测得楼顶的仰角为,然后沿坡面上行了米到达点处,此时在处测得楼顶的仰角为,求楼的高度.(结果保留整数)(参考数)22.(10分)如图,在矩形ABCD中,E是边CD的中点,点M是边AD上一点(与点A,D不重合),射线ME与BC的延长线交于点N.(1)求证:△MDE≌△NCE;(2)过点E作EF//CB交BM于点F,当MB=MN时,求证:AM=EF.23.(10分)问题背景:如图1设P是等边△ABC内一点,PA=6,PB=8,PC=10,求∠APB的度数.小君研究这个问题的思路是:将△ACP绕点A逆时针旋转60°得到△ABP',易证:△APP'是等边三角形,△PBP'是直角三角形,所以∠APB=∠APP'+∠BPP'=150°.简单应用:(1)如图2,在等腰直角△ABC中,∠ACB=90°.P为△ABC内一点,且PA=5,PB=3,PC=2,则∠BPC=°.(2)如图3,在等边△ABC中,P为△ABC内一点,且PA=5,PB=12,∠APB=150°,则PC=.拓展廷伸:(3)如图4,∠ABC=∠ADC=90°,AB=BC.求证:BD=AD+DC.(4)若图4中的等腰直角△ABC与Rt△ADC在同侧如图5,若AD=2,DC=4,请直接写出BD的长.24.(10分)某学校为了解学生“第二课堂“活动的选修情况,对报名参加A.跆拳道,B.声乐,C.足球,D.古典舞这四项选修活动的学生(每人必选且只能选修一项)进行抽样调查.并根据收集的数据绘制了图①和图②两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次调查的学生共有人;在扇形统计图中,B所对应的扇形的圆心角的度数是;(2)将条形统计图补充完整;(3)在被调查选修古典舞的学生中有4名团员,其中有1名男生和3名女生,学校想从这4人中任选2人进行古典舞表演.请用列表或画树状图的方法求被选中的2人恰好是1男1女的概率.25.(12分)如图所示,在平面直角坐标系中,抛物线的顶点坐标为,并与轴交于点,点是对称轴与轴的交点.(1)求抛物线的解析式;(2)如图①所示,是抛物线上的一个动点,且位于第一象限,连结BP、AP,求的面积的最大值;(3)如图②所示,在对称轴的右侧作交抛物线于点,求出点的坐标;并探究:在轴上是否存在点,使?若存在,求点的坐标;若不存在,请说明理由.26.如图,在平面直角坐标系中,点B在x轴上,∠ABO=90°,AB=BO,直线y=﹣3x﹣4与反比例函数y=交于点A,交y轴于C点.(1)求k的值;(2)点D与点O关于AB对称,连接AD、CD,证明△ACD是直角三角形;(3)在(2)的条件下,点E在反比例函数图象上,若S△OCE=S△OCD,求点E的坐标.
参考答案一、选择题(每题4分,共48分)1、A【分析】用树形图法确定所有情况和所需情况,然后用概率公式解答即可.【详解】解:画树状图如下:则总共有12种情况,其中有6种情况是两个球颜色相同的,故其概率为.故答案为A.【点睛】本题考查画树形图和概率公式,其中根据题意画出树形图是解答本题的关键.2、B【解析】因为旋转后得到△AMN与△ABC相似,则∠AMN=∠C=40°,因为旋转前∠AMN=80°,所以旋转角度为40°,故选B.3、A【分析】逐项计算方程的判别式,根据根的判别式进行判断即可.【详解】解:在x2﹣x﹣1=0中,△=(﹣1)2﹣4×1×(﹣1)=1+4=5>0,故该方程有两个不相等的实数根,故A符合题意;在x2+x+1=0中,△=12﹣4×1×1=1﹣4=﹣3<0,故该方程无实数根,故B不符合题意;在x2+1=0中,△=0﹣4×1×1=0﹣4=﹣4<0,故该方程无实数根,故C不符合题意;在x2+2x+1=0中,△=22﹣4×1×1=0,故该方程有两个相等的实数根,故D不符合题意;故选:A.【点睛】本题考查根的判别式,解题的关键是记住判别式,△>0有两个不相等实数根,△=0有两个相等实数根,△<0没有实数根,属于中考常考题型.4、A【解析】解:∵二次函数y=ax2﹣bx+2的图象开口向上,∴a>0;∵对称轴x=﹣<0,∴b<0;因此﹣a<0,b<0∴综上所述,函数y=﹣ax+b的图象过二、三、四象限.即函数y=﹣ax+b的图象不经过第一象限.故选A.5、A【分析】计算出在半径为R的圆中,内接正方形和内接正六边形的边长即可求出.【详解】解:设此圆的半径为R,则它的内接正方形的边长为R,它的内接正六边形的边长为R,内接正方形和内接正六边形的周长比为:4R:6R=∶1.故选:A.【点睛】本题考查了正多边形和圆,找出内接正方形与内接正六边形的边长关系,是解决问题的关键.6、B【解析】由DE∥BC,利用“两直线平行,同位角相等”可得出∠ADE=∠ABC,∠AED=∠ACB,进而可得出△ADE∽△ABC,再利用相似三角形的面积比等于相似比的平方即可求出结论.【详解】∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB,∴△ADE∽△ABC,∴.故选B.【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.7、A【分析】根据二次根式被开方数为非负数即可求解.【详解】依题意得2-4x≥0解得x≤故选A.【点睛】此题主要考查二次根式有意义的条件,解题的关键是熟知二次根式被开方数为非负数.8、C【解析】试题分析:一次函数的图象有四种情况:①当,时,函数的图象经过第一、二、三象限;②当,时,函数的图象经过第一、三、四象限;③当,时,函数的图象经过第一、二、四象限;④当,时,函数的图象经过第二、三、四象限.因此,∵函数y=x﹣1的,,∴它的图象经过第一、三、四象限.根据反比例函数的性质:当时,图象分别位于第一、三象限;当时,图象分别位于第二、四象限.∵反比例函数的系数,∴图象两个分支分别位于第一、三象限.综上所述,符合上述条件的选项是C.故选C.9、C【分析】若二次函数的图像与x轴没有交点,则,解出关于m、n的不等式,再分别判断即可;【详解】解:与轴无交点,,,故A、B错误;同理:;故选C.【点睛】本题主要考查了抛物线与坐标轴的交点,掌握抛物线与坐标轴的交点是解题的关键.10、C【解析】试题分析:先求每名同学赠的标本,再求x名同学赠的标本,而已知全组共互赠了182件,故根据等量关系可得到方程.每名同学所赠的标本为:(x-1)件,那么x名同学共赠:x(x-1)件,根据题意可列方程:x(x-1)=182,故选C.考点:本题考查的是根据实际问题列一元二次方程点评:找到关键描述语,找到等量关系,然后准确的列出方程是解答本题的关键.11、B【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线向右平移一个单位所得直线解析式为:;再向上平移2个单位为:,即.故选B.【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.12、D【分析】利用因式分解法求解可得.【详解】解:∵2x(x﹣5)=6(x﹣5)2x(x﹣5)﹣6(x﹣5)=0,∴(x﹣5)(2x﹣6)=0,则x﹣5=0或2x﹣6=0,解得x=5或x=3,故选:D.【点睛】本题考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.二、填空题(每题4分,共24分)13、【分析】根据位似变换的性质计算即可.【详解】∵以原点O为位似中心,相似比为,把线段AB缩短为线段CD,B(6,3),∴点D的坐标为:,即,故答案为:.【点睛】本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.14、y=﹣【分析】直接利用平行四边形的性质得出C点坐标,再利用反比例函数解析式的求法得出答案.【详解】解:∵A(5,0),B(4,4),以OA、AB为边作▱OABC,∴BC=AO=5,BE=4,EO=4,∴EC=1,故C(﹣1,4),若一个反比例函数的图象经过C点,则这个函数的解析式为:y=﹣.故答案为:y=﹣.【点睛】本题主要考查的是平行四边形的性质和反比例函数解析式的求法,将反比例函数上的点带入解析式中即可求解.15、﹣1.【解析】根据关于对称轴对称的自变量对应的函数值相等,可得答案.解:由函数图象关于对称轴对称,得(﹣1,﹣2),(0,1),(1,2)在函数图象上,把(﹣1,﹣2),(0,1),(1,﹣2)代入函数解析式,得,解得,,函数解析式为y=﹣3x2+1x=2时y=﹣11,故答案为﹣1.“点睛”本题考查了二次函数图象,利用函数图象关于对称轴对称是解题关键.16、35°【分析】由同弧所对的圆周角相等求得∠A=∠D=42°,根据三角形内角与外角的关系可得∠B的大小.【详解】∵同弧所对的圆周角相等求得∠D=∠A=42°,且∠APD=77°是三角形PBD外角,∴∠B=∠APD−∠D=35°,故答案为:35°.【点睛】此题考查圆周角定理及其推论,解题关键明确三角形内角与外角的关系.17、1【分析】根据比例中项的定义,列出比例式即可得出中项,注意线段不能为负.【详解】∵线段c是线段a和线段b的比例中项,∴,解得(线段是正数,负值舍去),∴,故答案为:1.【点睛】本题考查比例线段、比例中项等知识,比例中项的平方等于两条线段的乘积,熟练掌握基本概念是解题关键.18、【分析】利用圆锥的底面周长和母线长求得圆锥的侧面积,然后再利用圆锥的面积的计算方法求得侧面展开扇形的圆心角的度数即可【详解】∵圆锥的底面圆的周长是,∴圆锥的侧面扇形的弧长为cm,,解得:故答案为.【点睛】此题考查弧长的计算,解题关键在于求得圆锥的侧面积三、解答题(共78分)19、(1)见解析;(2)见解析;(3)【分析】(1)根据ASA证明即可.(2)作FH∥AB交AC的延长线于H,由“AAS”可证△APE≌△HPF,可得PE=PF;(3)如图2,先根据平行线分线段成比例定理表示,可得AQ的长,再计算AH的长,根据(2)中的全等可得AP=PH,由线段的差可得结论.【详解】(1)证明:∵四边形ABCD是正方形,∴DA=DC,∠DAE=∠BCD=∠DCF=∠ADC=90°,∴∠ADE+∠EDC=90°∵∠EDF=90°∴∠EDC+∠CDF=90°∴∠ADE=∠CDF在△ADE和△CDF中,∵∴△ADE≌△CDF(ASA).(2)证明:由(1)知:△ADE≌△CDF,∴AE=CF,作FH∥AB交AC的延长线于H.∵四边形ABCD是正方形,∴∠ACB=∠FCH=45°,∵AB∥FH,∴∠HFC=∠ABC=90°,∴∠FCH=∠H=45°,∴CF=FH=AE,在△AEP和△HFP中,∵,∴△APE≌△HPF(AAS),∴PE=PF;(3)∵AE∥CD,∴,∵AE=1,CD=4,∴,∵四边形ABCD是正方形,∴AB=BC=4,∠B=90°,∴AC=4,∴AQ=AC=,∵AE=FH=CF=1,∴CH=,∴AH=AC+CH=4+=5,由(2)可知:△APE≌△HPF,∴AP=PH,∴AP=AH=,∴PQ=AP﹣AQ=﹣=.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.20、(1)100;108°;(2)详见解析;(3)600人;(4)【分析】(1)利用喜欢“电话”沟通的人数除以其所占调查总人数的百分率即可求出调查总人数,然后求出喜欢“QQ”沟通的人数占调查总人数的百分率,再乘360°即可求出结论;(2)用调查总人数×喜欢“短信”沟通的人数所占百分率即可求出喜欢“短信”沟通的人数,然后用调查总人数减去其余“电话”、“短信”、“QQ”和“其它”沟通的人数即可求出喜欢用“微信”沟通的人数,最后补全条形统计图即可;(3)先求出喜欢用“微信”沟通的人数占调查总人数的百分率,再乘1500即可;(4)根据题意,画出树状图,然后根据概率公式计算即可.【详解】解:(1)调查总人数为20÷20%=100人表示""的扇形圆心角的度数是30÷100×360°=108°(2)喜欢用“短信”沟通的人数为:100×5%=5人,喜欢用“微信”沟通的人数为:100-20-5-30-5=40人,补充条形统计图,如图所示:(3)喜欢用“微信”沟通所占百分比为:∴该校共有1500名学生,估计该校最喜欢用“微信”进行沟通的学生有:人.答:该校最喜欢用“微信”进行沟通的学生有600人.(4)列出树状图,如图所示,共有9种等可能的结果,其中两人恰好选中同一种沟通方式共有3种情况,所以甲、乙两名同学恰好选中同一种沟通方式的概率为:【点睛】此题考查的是条形统计图、扇形统计图和求概率问题,结合条形统计图和扇形统计图得出有用信息并掌握画树状图和概率公式求概率是解决此题的关键.21、24米【分析】由i==,DE2+EC2=CD2,解得DE=5m,EC=m,过点D作DG⊥AB于G,过点C作CH⊥DG于H,则四边形DEBG、四边形DECH、四边形BCHG都是矩形,证得AB=BC,设AB=BC=xm,则AG=(x-5)m,DG=(x+)m,在Rt△ADG中,=tan∠ADG,代入即可得出结果.【详解】解:在Rt△DEC中,∵i==,,DE2+EC2=CD2,CD=10,∴DE2+(DE)2=102,解得:DE=5(m),
∴EC=m,
过点D作DG⊥AB于G,过点C作CH⊥DG于H,如图所示:
则四边形DEBG、四边形DECH、四边形BCHG都是矩形,
∵∠ACB=45°,AB⊥BC,
∴AB=BC,
设AB=BC=xm,则AG=(x-5)m,DG=(x+)m,
在Rt△ADG中,∵=tan∠ADG,,解得:x=15+5≈24,答:楼AB的高度为24米.【点睛】本题考查了解直角三角形的应用-方向角问题,通过解直角三角形得出方程是解题的关键.22、(1)见解析;(2)见解析.【分析】(1)由平行线的性质得出∠DME=∠CNE,∠MDE=∠ECN,可证明△MDE≌△NCE(AAS);(2)过点M作MG⊥BN于点G,由等腰三角形的性质得出BG=BN=BN,由中位线定理得出EF=BN,则可得出结论.【详解】解:(1)证明:∵四边形ABCD为矩形,∴AD//BC,∴∠DME=∠CNE,∠MDE=∠ECN,∵E为CD的中点,∴DE=CE,∴△MDE≌△NCE(AAS);(2)证明:过点M作MG⊥BN于点G,∵BM=MN,∴BG=BN=BN,∵矩形ABCD中,∠A=∠ABG=90°,又∵MG⊥BN,∴∠BGM=90°,∴四边形ABGM为矩形,∴AM=BG=,∵EF//BN,E为DC的中点,∴F为BM的中点,∴EF=BN,∴AM=EF.【点睛】本题考查了矩形的性质,等腰三角形的性质,中位线定理,全等三角形的判定与性质等知识,熟练掌握矩形的性质是解题的关键.23、(1)135;(2)13;(3)见解析;(4)【分析】简单应用:(1)先利用旋转得出BP'=AP=5,∠PCP'=90°,CP'=CP=2,再根据勾股定理得出PP'=CP=4,最后用勾股定理的逆定理得出△BPP'是以BP'为斜边的直角三角形,即可得出结论;(2)同(1)的方法得出∠APP'=60°,进而得出∠BPP'=∠APB﹣∠APP'=90°,最后用勾股定理即可得出结论;拓展廷伸:(3)先利用旋转得出BD'=BD,CD'=AD,∠BCD'=∠BAD,再判断出点D'在DC的延长线上,最后用勾股定理即可得出结论;(4)先利用旋转得出BD'=BD,CD=AD',∠DBD'=90°,∠BCD=∠BAD',再判断出点D'在AD的延长线上,最后用勾股定理即可得出结论.【详解】解:简单应用:(1)如图2,∵△ABC是等腰直角三角形,∴∠ACB=90°,AC=BC,将△ACP绕点C逆时针旋转90°得到△CBP',连接PP',∴BP'=AP=5,∠PCP'=90°,CP'=CP=2,∴∠CPP'=∠CP'P=45°,根据勾股定理得,PP'=CP=4,∵BP'=5,BP=3,∴PP'2+BP2=BP',∴△BPP'是以BP'为斜边的直角三角形,∴∠BPP'=90°,∴∠BPC=∠BPP'+∠CPP'=135°,故答案为:135;(2)如图3,∵△ABC是等边三角形,∴∠BAC=60°,AC=AB,将△ACP绕点A逆时针旋转60°得到△ABP',连接PP',∴BP'=CP,AP'=AP=5,∠PAP'=60°,∴△APP'是等边三角形,∴PP'=AP=5,∠APP'=60°,∵∠APB=150°,∴∠BPP'=∠APB﹣∠APP'=90°,根据勾股定理得,BP'==13,∴CP=13,故答案为:13;拓展廷伸:(3)如图4,在△ABC中,∠ABC=90°,AB=BC,将△ABD绕点B顺时针旋转90°得到△BCD',∴BD'=BD,CD'=AD,∠BCD'=∠BAD,∵∠ABC=∠ADC=90°,∴∠BAD+∠BCD=180°,∴∠BCD+∠BCD'=180°,∴点D'在DC的延长线上,∴DD'=CD+CD'=CD+AD,在Rt△DBD'中,DD'=BD,∴BD=CD+AD;(4)如图5,在△ABC中,∠ABC=90°,AB=BC,连接BD,将△CBD绕点B顺时针旋转90°得到△ABD',∴BD'=BD,CD=AD',∠DBD'=90°,∠BCD=∠BAD',AB与CD的交点记作G,∵∠ADC=∠ABC=90°,∴∠DAB+∠AGD=∠BCD+∠BGC=180°,∵∠AGD=∠BGC,∴∠BAD=∠BCD,∴∠BAD=∠BAD',∴点D'在AD的延长线上,∴DD'=AD'﹣AD=CD﹣AD=2,在Rt△BDD'中,BD=DD'=.【点睛】本题主要考查了三角形的旋转变换,涉及了旋转的性质、等边三角形的判定和性质、等腰直角三角形的性质、勾股定理,灵活的利用三角形的旋转变换添加辅助线是解题的关键.24、(1)200、144;(2)补全图形见解析;(3)被选中的2人恰好是1男1女的概率.【分析】(1)由A活动的人数及其所占百分比可得总人数,用360°乘以B活动人数所占比例即可得;
(2)用总人数减去其它活动人数求出C的人数,从而补全图形;
(3)列表得出所有等可能的情况数,找出刚好抽到一男一女的情况数,即可求出所求的概率.【详解】(1)本次调查的学生共有30÷15%=200(人),扇形统计图中,B所对应的扇形的圆心角的度数是360°×=144°,故答案为200、144;(2)C活动人数为200﹣(30+80+20)=70(人),补全图形如下:(3)画树状图为:或列表如下:男女1女2女3男﹣﹣﹣(女,男)(女,男)(女,男)女1(男,女)﹣﹣﹣(女,女)(女,女)女2(男,女)(女,女)﹣﹣﹣(女,女)女3(男,女)(女,女)(女,女)﹣﹣﹣∵共有12种等可能情况,1男1女有6种情况,∴被选中的2人恰好是1男1女的概率.【点睛】本题考查了扇形统计图,条形统计图,树状图等知识点,解题时注意:概率=所求情况数与总情况数之比.25、(1);(2)当时,最大值为;(3)存在,点坐标为,理由见解析【分析】(1)利用待定系数法可求出二次函数的解析式;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物流仓库经理年度述职报告
- 智慧教室装修方案
- 从业人员安全生产教育培训
- 孕期糖尿病饮食和护理
- 老年人糖尿病病人的护理
- 龋齿病的发展过程图解
- 2.3.1物质的量的单位-摩尔 课件高一上学期化学人教版(2019)必修第一册
- 吉林省2024七年级数学上册第1章有理数1.10有理数的除法课件新版华东师大版
- 吉林省2024七年级数学上册第1章有理数全章整合与提升课件新版华东师大版
- 深度学习及自动驾驶应用 课件 第9、10章 生成对抗网络及自动驾驶应用、强化学习理论及自动驾驶应用实践
- 心脏瓣膜置换术后抗凝护理学习教案
- 脑梗塞临床路径
- 苏教版数学 五年级上册 教材分析
- 机读答题卡模板 英语
- 工程项目专项监督检查表
- 线性方程组的迭代解法及收敛分析
- LightGuideing导光柱设计指南
- 甘蔗汁褐变抑制研究
- 海康威视枪机摄像机检测报告精编版
- 强化沸腾传热的方法
- 《小红帽》绘本故事PPT课件61647
评论
0/150
提交评论