版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省重点中学2025届九年级数学第一学期期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,在平面直角坐标系中,Rt△ABO中,∠ABO=90°,OB边在x轴上,将△ABO绕点B顺时针旋转60°得到△CBD.若点A的坐标为(-2,2),则点C的坐标为()A.(,1) B.(1,) C.(1,2) D.(2,1)2.我们知道,一元二次方程可以用配方法、因式分解法或求根公式进行求解.对于一元三次方程ax3+bx2+cx+d=0(a,b,c,d为常数,且a≠0)也可以通过因式分解、换元等方法,使三次方程“降次”为二次方程或一次程,进而求解.这儿的“降次”所体现的数学思想是()A.转化思想 B.分类讨论思想C.数形结合思想 D.公理化思想3.将抛物线向左平移个单位长度,再向.上平移个单位长度得到的抛物线的解析式为()A. B.C. D.4.下列说法正确的是()A.可能性很大的事情是必然发生的B.可能性很小的事情是不可能发生的C.“掷一次骰子,向上一面的点数是6”是不可能事件D.“任意画一个三角形,其内角和是”5.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(-1,0),(0,).现将该三角板向右平移使点A与点O重合,得到△OCB’,则点B的对应点B’的坐标是(
)A.(1,0) B.(,) C.(1,) D.(-1,)6.如图,在平行四边形ABCD中,F是边AD上的一点,射线CF和BA的延长线交于点E,如果,那么的值是()A. B. C. D.7.如图,△ABC的顶点均在⊙O上,若∠A=36°,则∠OBC的度数为()A.18° B.36° C.60° D.54°8.如图,是的直径,、是弧(异于、)上两点,是弧上一动点,的角平分线交于点,的平分线交于点.当点从点运动到点时,则、两点的运动路径长的比是()A. B. C. D.9.在△ABC中,∠C90°.若AB3,BC1,则的值为()A. B. C. D.10.如果两个相似三角形的面积比是1:4,那么它们的周长比是A.1:16 B.1:6 C.1:4 D.1:211.已知x=5是分式方程=的解,则a的值为()A.﹣2 B.﹣4 C.2 D.412.方程﹣1=的解是()A.﹣1 B.2或﹣1 C.﹣2或3 D.3二、填空题(每题4分,共24分)13.已知m,n是方程的两个实数根,则.14.如图,为半圆的直径,点、、是半圆弧上的三个点,且,,若,,连接交于点,则的长是______.15.如图,在△ABC中,∠BAC=75°,以点A为旋转中心,将△ABC绕点A逆时针旋转,得△AB'C',连接BB',若BB'∥AC',则∠BAC′的度数是______________.16.若整数使关于的二次函数的图象在轴的下方,且使关于的分式方程有负整数解,则所有满足条件的整数的和为__________.17.若是方程的一个根,则代数式的值是______.18.某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO=8米,母线AB=10米,则该圆锥的侧面积是_____平方米(结果保留π).三、解答题(共78分)19.(8分)如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.(1)求出抛物线的解析式;(2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.20.(8分)如图,反比例函数的图象过点A(2,3).(1)求反比例函数的解析式;(2)过A点作AC⊥x轴,垂足为C.若P是反比例函数图象上的一点,求当△PAC的面积等于6时,点P的坐标.21.(8分)如图,一天,我国一渔政船航行到A处时,发现正东方向的我领海区域B处有一可疑渔船,正在以12海里∕小时的速度向西北方向航行,我渔政船立即沿北偏东60º方向航行,1.5小时后,在我领海区域的C处截获可疑渔船.问我渔政船的航行路程是多少海里?(结果保留根号)22.(10分)已知:在Rt△ABC中,AB=BC,在Rt△ADE中,AD=DE;连结EC,取EC的中点M,连结DM和BM.(1)若点D在边AC上,点E在边AB上且与点B不重合,如图1,求证:BM=DM且BM⊥DM;(2)如果将图1中的△ADE绕点A逆时针旋转小于45°的角,如图2,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.23.(10分)如图,已知点A,B的坐标分别为(4,0),(3,2).(1)画出△AOB关于原点O对称的图形△COD;(2)将△AOB绕点O按逆时针方向旋转90°得到△EOF,画出△EOF;(3)点D的坐标是,点F的坐标是,此图中线段BF和DF的关系是.24.(10分)如图,要在长、宽分别为40米、24米的矩形赏鱼池内建一个正方形的亲水平台.为了方便行人观赏,分别从东、南、西、北四个方向修四条等宽的小路与平台相连,若小路的宽是正方形平台边长的,小路与亲水平台的面积之和占矩形赏鱼池面积的,求小路的宽.25.(12分)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A()和B(4,6),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)当C为抛物线顶点的时候,求的面积.(3)是否存在质疑的点P,使的面积有最大值,若存在,求出这个最大值,若不存在,请说明理由.26.用适当的方法解下列一元二次方程:(1);(2).
参考答案一、选择题(每题4分,共48分)1、B【解析】作CH⊥x轴于H,如图,∵点A的坐标为(−2,),AB⊥x轴于点B,∴tan∠BAC=,∴∠A=,∵△ABO绕点B逆时针旋转60∘得到△CBD,∴BC=BA=,OB=2,∠CBH=,在Rt△CBH中,,,OH=BH−OB=3−2=1,∴故选:B.【点睛】根据直线解析式求出点A的坐标,然后求出AB、OB,再利用勾股定理列式求出OA,然后判断出∠C=30°,CD∥x轴,再根据直角三角形30°角所对的直角边等于斜边的一半求出BE,利用勾股定理列式求出CE,然后求出点C的横坐标,再写出点C的坐标即可.2、A【分析】解高次方程的一般思路是逐步降次,所体现的数学思想就是转化思想.【详解】由题意可知,解一元三次方程的过程是将三次转化为二次,二次转化为一次,从而解题,在解题技巧上是降次,在解题思想上是转化思想.故选:A.【点睛】本题考查高次方程;通过题意,能够从中提取出解高次方程的一般方法,同时结合解题过程分析出所运用的解题思想是解题的关键.3、B【分析】原抛物线的顶点坐标(0,0),再把点(0,0)向左平移4个单位长度得点(0,-4),再向上平移1个单位长度得到点(-4,1),然后根据顶点式写出平移后的抛物线解析式.【详解】解:抛物线先向左平移个单位长度,得到的抛物线解析式为,再向上平移个单位长度得到的抛物线解析式为,故选:.【点睛】本题考查的是抛物线平移,根据抛物线平移规律“左移加右移减,上移加下移减”写出平移后的抛物线解析式.需要注意左平移是加,右平移是减.4、D【分析】了解事件发生的可能性与必然事件、不可能事件、可能事件之间的关系.【详解】解:A错误.可能性很大的事件并非必然发生,必然发生的事件的概率为1;B错误.可能性很小的事件指事件发生的概率很小,不可能事件的概率为0;C错误.掷一枚普通的正方体骰子,结果恰好点数“6”朝上的概率为.为可能事件.D正确.三角形内角和是180°.故选:D.【点睛】本题考查事件发生的可能性,注意可能性较小的事件也有可能发生;可能性很大的事也有可能不发生.5、C【分析】根据A点的坐标,得出OA的长,根据平移的条件得出平移的距离,根据平移的性质进而得出答案.【详解】∵A(-1,0),∴OA=1,∵一个直角三角板的直角顶点与原点重合,现将该三角板向右平移使点A与点O重合,得到△OCB’,∴平移的距离为1个单位长度,∴则点B的对应点B’的坐标是(1,).故答案为:C.【点睛】此题考查坐标与图形变化,关键是根据平移的性质得出平移后坐标的特点.6、D【解析】分析:根据相似三角形的性质进行解答即可.详解:∵在平行四边形ABCD中,∴AE∥CD,∴△EAF∽△CDF,∵∴∴∵AF∥BC,∴△EAF∽△EBC,∴故选D.点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方.7、D【解析】根据圆周角定理,由∠A=36°,可得∠O=2∠A=72°,然后根据OB=OC,求得∠OBC=12(180°-∠O)=1故选:D点睛:此题主要考查了圆周角定理,解题时,根据同弧所对的圆周角等于圆心角的一半,求出圆心角,再根据等腰三角形的性质和三角形的内角和定理求解即可,解题关键是发现同弧所对的圆心角和圆周角,明确关系进行计算.8、A【解析】连接BE,由题意可得点E是△ABC的内心,由此可得∠AEB=135°,为定值,确定出点E的运动轨迹是是弓形AB上的圆弧,此圆弧所在圆的圆心在AB的中垂线上,根据题意过圆心O作直径CD,则CD⊥AB,在CD的延长线上,作DF=DA,则可判定A、E、B、F四点共圆,继而得出DE=DA=DF,点D为弓形AB所在圆的圆心,设⊙O的半径为R,求出点C的运动路径长为,DA=R,进而求出点E的运动路径为弧AEB,弧长为,即可求得答案.【详解】连结BE,∵点E是∠ACB与∠CAB的交点,∴点E是△ABC的内心,∴BE平分∠ABC,∵AB为直径,∴∠ACB=90°,∴∠AEB=180°-(∠CAB+∠CBA)=135°,为定值,,∴点E的轨迹是弓形AB上的圆弧,∴此圆弧的圆心一定在弦AB的中垂线上,∵,∴AD=BD,如下图,过圆心O作直径CD,则CD⊥AB,∠BDO=∠ADO=45°,在CD的延长线上,作DF=DA,则∠AFB=45°,即∠AFB+∠AEB=180°,∴A、E、B、F四点共圆,∴∠DAE=∠DEA=67.5°,∴DE=DA=DF,∴点D为弓形AB所在圆的圆心,设⊙O的半径为R,则点C的运动路径长为:,DA=R,点E的运动路径为弧AEB,弧长为:,C、E两点的运动路径长比为:,故选A.【点睛】本题考查了点的运动路径,涉及了三角形的内心,圆周角定理,四点共圆,弧长公式等,综合性较强,正确分析出点E运动的路径是解题的关键.9、A【解析】∵在△ABC中,∠C=90°,AB=3,BC=1,∴sinA=.故选A.10、D【解析】根据相似三角形面积的比等于相似比的平方求出相似比,根据相似三角形周长的比等于相似比解答即可.【详解】解:两个相似三角形的面积比是1:4,两个相似三角形的相似比是1:2,两个相似三角形的周长比是1:2,故选:D.【点睛】本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方是解题的关键.11、C【分析】现将x=5代入分式方程,再根据解分式方程的步骤解出a即可.【详解】∵x=5是分式方程=的解,∴=,∴=,解得a=1.故选:C.【点睛】本题考查解分式方程,关键在于代入x的值,熟记分式方程的解法.12、D【分析】找到最简公分母,去分母后得到关于x的一元二次方程,求解后,再检验是否有增根问题可解.【详解】解:去分母得2x﹣(x2﹣4)=x﹣2,整理得x2﹣x﹣6=0,解得x1=1,x2=-2,检验:当x=1时,x2﹣4≠0,所以x=1是原方程的解;当x=-2时,x2﹣4=0,所以x=2是原方程的增根,所以原方程的解为x=1.故选:D.【点睛】本题考查了可化为一元二次方程的分式方程的解法,解答完成后要对方程的根进行检验,判定是否有增根产生.二、填空题(每题4分,共24分)13、3【解析】根据题意得m+n=−2,mn=−5,所以m+n−mn=2−(-5)=3.14、【分析】连接OC,根据菱形的判定,可得四边形AODC为菱形,从而得出AC=OD,根据圆的性质可得OE=OC=AC=OA=,从而得出△AOC为等边三角形,然后根据同弧所对的圆周角是圆心角的一半,可求得∠EOC,从而得出OE平分∠AOC,根据三线合一和锐角三角函数即可求出OF,从而求出EF.【详解】解:连接OC∵,,OA=OD∴四边形AODC为菱形∴AC=OD∵∴OE=OC=AC=OA=∴△AOC为等边三角形∴∠AOC=60°∵∴∠EOC=2∴OE平分∠AOC∴OE⊥AC在Rt△OFC中,cos∠EOC=∴∴EF=OE-OF=故答案为:.【点睛】此题考查的是菱形的判定及性质、圆的基本性质、等边三角形的判定及性质和解直角三角形,掌握菱形的判定及性质、同弧所对的圆周角是圆心角的一半、等边三角形的判定及性质和用锐角三角函数解直角三角形是解决此题的关键.15、105°【分析】根据旋转的性质得AB′=AB,∠B′AB=∠C′AC,再根据等腰三角形的性质得∠AB′B=∠ABB′,然后根据平行线的性质得到∠AB′B=∠C′AB′=75°,于是得到结论.【详解】解:∵△ABC绕点A逆时针旋转到△AB′C′,
∴AB′=AB,∠B′AB=∠C′AC,∠C′AB′=∠CAB=75°,
∴△AB′B是等腰三角形,∴∠AB′B=∠ABB′
∵BB'∥AC,
∴∠AB′B=∠C′AB′=75°,
∴∠C′AC=∠B′AB=180°-2×75°=30°,
∴∠BAC′=∠C′AC+∠BAC=30°+75°=105°,故答案为:105°.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了平行线的性质.16、【分析】根据二次函数的图象在轴的下方得出,,解分式方程得,注意,根据分式方程有负整数解求出a,最后结合a的取值范围进行求解.【详解】∵二次函数的图象在轴的下方,∴,,解得,,,解得,,∵分式方程有负整数解,∴,即,∵,∴,∴所有满足条件的整数的和为,故答案为:.【点睛】本题考查二次函数的图象,解分式方程,分式方程的整数解,二次函数的图象在x轴下方,则开口向下且函数的最大值小于1,解分式方程时注意分母不为1.17、9【分析】根据方程解的定义,将a代入方程得到含a的等式,将其变形,整体代入所求的代数式.【详解】解:∵a是方程的一个根,∴2a2=a+3,∴2a2-a=3,∴.故答案为:9.【点睛】本题考查方程解的定义及代数式求值问题,理解方程解的定义和整体代入思想是解答此题的关键.18、【分析】根据勾股定理求得OB,再求得圆锥的底面周长即圆锥的侧面弧长,根据扇形面积的计算方法S=lr,求得答案即可.【详解】解:∵AO=8米,AB=10米,∴OB=6米,∴圆锥的底面周长=2×π×6=12π米,∴S扇形=lr=×12π×10=60π米2,故答案为60π.【点睛】本题考查圆锥的侧面积,掌握扇形面积的计算方法S=lr是解题的关键.三、解答题(共78分)19、(1)y=-x2+x-2;(2)点P为(2,1)或(5,-2)或(-3,-14)或(0,-2).【解析】(1)用待定系数法求出抛物线解析式;
(2)以A、P、M为顶点的三角形与△OAC相似,分两种情况讨论计算即可.【详解】解:(1)∵该抛物线过点C(0,-2),∴可设该抛物线的解析式为y=ax2+bx-2.将A(4,0),B(1,0)代入,得,解得,∴此抛物线的解析式为.(2)存在,设P点的横坐标为m,则P点的纵坐标为-m2+m-2,当1<m<4时,AM=4-m,PM=-m2+m-2.又∵∠COA=∠PMA=90°,∴①当==时,△APM∽△ACO,即4-m=2(-m2+m-2).解得m1=2,m2=4(舍去),∴P(2,1).②当==时,△APM∽△CAO,即2(4-m)=-m2+m-2.解得m1=4,m2=5(均不合题意,舍去),∴当1<m<4时,P(2,1).类似地可求出当m>4时,P(5,-2).当m<1时,P(-3,-14)或P(0,-2),综上所述,符合条件的点P为(2,1)或(5,-2)或(-3,-14)或(0,-2).【点睛】本题考查的知识点是二次函数综合题,解题的关键是熟练的掌握二次函数综合题.20、(1)y=;(2)(1,1),(﹣2,﹣3).【分析】(1)把点A的坐标代入反比例函数解析式,列出关于系数m的方程,通过解方程来求m的值;(2)设点P的坐标是(a,),然后根据三角形的面积公式来求点P的坐标.【详解】解:(1)设反比例函数为y=,∵反比例函数的图象过点A(2,3).则=3,解得m=1.故该反比例函数的解析式为y=;(2)设点P的坐标是(a,).∵A(2,3),∴AC=3,OC=2.∵△PAC的面积等于1,∴×AC×|a﹣2|=1,解得:|a﹣2|=4,∴a1=1,a2=﹣2,∴点P的坐标是(1,1),(﹣2,﹣3).【点睛】本题考查了反比例函数的面积问题,涉及的知识点有:待定系数法求函数解析式,坐标和图形性质,以及反比例函数的图像和性质,熟练掌握反比例函数的几何意义是解题的关键21、我渔政船的航行路程是海里.【分析】过C点作AB的垂线,垂足为D,构建Rt△ACD,Rt△BCD,解这两个直角三角形即可.【详解】解:如图:作CD⊥AB于点D,∵在Rt△BCD中,BC=12×1.5=18海里,∠CBD=45°,∴CD=BC•sin45°=(海里).∴在Rt△ACD中,AC=CD÷sin30°=(海里).答:我渔政船的航行路程是海里.点睛:考查了解直角三角形的应用(方向角问题),锐角三角函数定义,特殊角的三角函数值.22、(1)证明见解析(2)当△ADE绕点A逆时针旋转小于45°的角时,(1)中的结论成立【分析】(1)根据直角三角形斜边上的中线的性质得出BM=DM,然后根据四点共圆可以得出∠BMD=2∠ACB=90°,从而得出答案;(2)连结BD,延长DM至点F,使得DM=MF,连结BF、FC,延长ED交AC于点H,根据题意得出四边形CDEF为平行四边形,然后根据题意得出△ABD和△CBF全等,根据角度之间的关系得出∠DBF=∠ABC=90°.【详解】解:(1)在Rt△EBC中,M是斜边EC的中点,∴.在Rt△EDC中,M是斜边EC的中点,∴.∴BM=DM,且点B、C、D、E在以点M为圆心、BM为半径的圆上.∴∠BMD=2∠ACB=90°,即BM⊥DM.(2)当△ADE绕点A逆时针旋转小于45°的角时,(1)中的结论成立.证明:连结BD,延长DM至点F,使得DM=MF,连结BF、FC,延长ED交AC于点H.∵DM=MF,EM=MC,∴四边形CDEF为平行四边形,∴DE∥CF,ED=CF,∵ED=AD,∴AD=CF,∵DE∥CF,∴∠AHE=∠ACF.∵,,∴∠BAD=∠BCF,又∵AB=BC,∴△ABD≌△CBF,∴BD=BF,∠ABD=∠CBF,∵∠ABD+∠DBC=∠CBF+∠DBC,∴∠DBF=∠ABC=90°.在Rt△中,由,,得BM=DM且BM⊥DM.【点睛】本题主要考查的是平行四边形的判定与性质、三角形全等、直角三角形的性质,综合性比较强.本题解题的关键是通过构建全等三角形来得出线段相等,然后根据线段相等得出所求的结论.23、(1)见解析;(2)见解析;(3)D(﹣3,﹣2),F(﹣2,3),垂直且相等【分析】(1)分别延长BO,AO到占D,C,使DO=BO,CO=AO,再顺次连接成△COD即可;
(2)将A,B绕点O按逆时针方向旋转90°得到对应点E,F,再顺次连接即可得出△EOF;
(3)利用图象即可得出点的坐标,以及线段BF和DF的关系.【详解】(1)如图所示:(2)如图所示:(3)结合图象即可得出:D(﹣3,﹣2),F(﹣2,3),线段BF和DF的关系是:垂直且相等.【点睛】此题考查了图形的旋转变换以及图形旋转
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电装作业合同范例
- 天价豪宅拆迁合同范例
- 商标异议合同范例
- 使用林地合同范例
- 井盖验收合同范例
- 正规电脑供货合同范例
- 电脑设备供货合同范例
- 医药公司委托销售合同范例
- Unit 9 Yes,I can!(教学实录)-2024-2025学年沪教版(五四制)(2024)英语一年级上册
- 辐射安全管理复习题
- (2024年)功能医学与健康管理
- 2023年度省综合专家库评标专家继续教育培训考试试题(三套)
- 江苏省南京市秦淮外国语学校2023-2024学年八年级下学期英语3月月考试卷
- 试验检测单位安全培训课件
- 学生职业生涯规划指导方案
- 二年级下册加减混合竖式练习360题附答案
- 公路沥青路面设计标准规范
- 2024年湖北交投智能检测股份有限公司招聘笔试参考题库含答案解析
- 2023年银行安全保卫知识考试题库(含答案)
- 血栓风险评估及个体化干预(遗传性易栓症风险基因检测)
- b族链球菌孕妇的护理
评论
0/150
提交评论