山西省临汾市霍峰中学2025届九年级数学第一学期期末考试试题含解析_第1页
山西省临汾市霍峰中学2025届九年级数学第一学期期末考试试题含解析_第2页
山西省临汾市霍峰中学2025届九年级数学第一学期期末考试试题含解析_第3页
山西省临汾市霍峰中学2025届九年级数学第一学期期末考试试题含解析_第4页
山西省临汾市霍峰中学2025届九年级数学第一学期期末考试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省临汾市霍峰中学2025届九年级数学第一学期期末考试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.下列事件是必然事件的是()A.打开电视机,正在播放动画片 B.经过有交通信号灯的路口,遇到红灯C.过三点画一个圆 D.任意画一个三角形,其内角和是2.如图,矩形ABCD的顶点D在反比例函数(x<0)的图象上,顶点B,C在x轴上,对角线AC的延长线交y轴于点E,连接BE,若△BCE的面积是6,则k的值为()A.﹣6 B.﹣8 C.﹣9 D.﹣123.如图,将一边长AB为4的矩形纸片折叠,使点D与点B重合,折痕为EF,若EF=2,则矩形的面积为()A.32 B.28 C.30 D.364.对于反比例函数,如果当≤≤时有最大值,则当≥8时,有()A.最大值 B.最小值 C.最大值= D.最小值=5.如图,随意向水平放置的大⊙O内部区域抛一个小球,则小球落在小⊙O内部(阴影)区域的概率为()A. B. C. D.6.在同一平面直角坐标系中,函数y=ax+b与y=bx2+ax的图象可能是()A. B. C. D.7.2018年某市初中学业水平实验操作考试,要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是().A. B. C. D.8.若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A. B. C. D.9.若3a=5b,则a:b=()A.6:5 B.5:3 C.5:8 D.8:510.一个不透明的袋子中有3个白球,4个黄球和5个红球,这些球除颜色不同外,其他完全相同.从袋子中随机摸出一个球,则它是黄球的概率是()A. B. C. D.11.如图所示的网格是正方形网格,则sinA的值为()A. B. C. D.12.在Rt△ABC中,cosA=,那么sinA的值是()A. B. C. D.二、填空题(每题4分,共24分)13.在数、、中任取两个数(不重复)作为点的坐标,则该点刚好在一次函数图象的概率是________________.14.在一个不透明的袋子中有个红球、个绿球和个白球,这些球除颜色外都相同,摇匀后从袋子中任意摸出一个球,摸出_______颜色的球的可能性最大.15.如图,矩形纸片ABCD中,AB=6cm,AD=10cm,点E、F在矩形ABCD的边AB、AD上运动,将△AEF沿EF折叠,使点A′在BC边上,当折痕EF移动时,点A′在BC边上也随之移动.则A′C的取值范围为_____.16.若方程x2﹣2x﹣1009=0有一个根是α,则2α2﹣4α+1的值为_____.17.若实数a、b满足a+b2=2,则a2+5b2的最小值为_____.18.太阳从西边升起是_____事件.(填“随机”或“必然”或“不可能”).三、解答题(共78分)19.(8分)如图,四边形、、都是正方形.求证:;求的度数.20.(8分)如图,正方形的对角线、相交于点,过点作的平行线,过点作的平行线,它们相交于点.求证:四边形是正方形.21.(8分)温州某企业安排名工人生产甲、乙两种产品,每人每天生产件甲或件乙,甲产品每件可获利元.根据市场需求和生产经验,乙产品每天产量不少于件,当每天生产件时,每件可获利元,每增加件,当天平均每件利润减少元.设每天安排人生产乙产品.根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲_______________________乙_____________若每天生产甲产品可获得的利润比生产乙产品可获得的利润多元,求每件乙产品可获得的利润.22.(10分)某商场试销一种成本为每件60元的服装,经试销发现,每天的销售量(件)与销售单价(元)的关系符合次函数.(1)如果要实现每天2000元的销售利润,该如何确定销售单价?(2)销售单价为多少元时,才能使每天的利润最大?其每天的最大利润是多少?23.(10分)已知:如图,在△ABC中,AD⊥BC于点D,E是AD的中点,连接CE并延长交边AB于点F,AC=13,BC=8,cos∠ACB=.(1)求tan∠DCE的值;(2)求的值.24.(10分)如图,在Rt△ABC中,∠C=90°,过AC上一点D作DE⊥AB于E,已知AB=10cm,AC=8cm,BE=6cm,求DE.25.(12分)小明同学用纸板制作了一个圆锥形漏斗模型,如图所示,它的底面半径,高,求这个圆锥形漏斗的侧面积.26.某商店购进一批成本为每件40元的商品,经调查发现,该商品每天的销售量(件与销售单价(元之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量与销售单价之间的函数关系式;(2)若商店要使销售该商品每天获得的利润等于1000元,每天的销售量应为多少件?(3)若商店按单价不低于成本价,且不高于65元销售,则销售单价定为多少元时,才能使销售该商品每天获得的利润最大?最大利润是多少元?

参考答案一、选择题(每题4分,共48分)1、D【分析】必然事件是在一定条件下,必然会发生的事件.依据定义判断即可.【详解】A.打开电视机,可能正在播放新闻或其他节目,所以不是必然事件;B.经过有交通信号灯的路口,遇到红灯,也可能遇到绿灯,所以不是必然事件;C.过三点画一个圆,如果这三点在一条直线上,就不能画圆,所以不是必然事件;D.任意画一个三角形,其内角和是,是必然事件.故选:D【点睛】本题考查的是必然事件,必然事件是一定发生的事件.2、D【分析】先设D(a,b),得出CO=-a,CD=AB=b,k=ab,再根据△BCE的面积是6,得出BC×OE=12,最后根据AB∥OE,BC•EO=AB•CO,求得ab的值即可.【详解】设D(a,b),则CO=﹣a,CD=AB=b,∵矩形ABCD的顶点D在反比例函数(x<0)的图象上,∴k=ab,∵△BCE的面积是6,∴×BC×OE=6,即BC×OE=12,∵AB∥OE,∴,即BC•EO=AB•CO,∴12=b×(﹣a),即ab=﹣12,∴k=﹣12,故选D.考点:反比例函数系数k的几何意义;矩形的性质;平行线分线段成比例;数形结合.3、A【分析】连接BD交EF于O,由折叠的性质可推出BD⊥EF,BO=DO,然后证明△EDO≌△FBO,得到OE=OF,设BC=x,利用勾股定理求BO,再根据△BOF∽△BCD,列出比例式求出x,即可求矩形面积.【详解】解:连接BD交EF于O,如图所示:∵折叠纸片使点D与点B重合,折痕为EF,∴BD⊥EF,BO=DO,∵四边形ABCD是矩形,∴AD∥BC∴∠EDO=∠FBO在△EDO和△FBO中,∵∠EDO=∠FBO,DO=BO,∠EOD=∠FOB=90°∴△EDO≌△FBO(ASA)∴OE=OF=EF=,∵四边形ABCD是矩形,∴AB=CD=4,∠BCD=90°,设BC=x,BD==,∴BO=,∵∠BOF=∠C=90°,∠CBD=∠OBF,∴△BOF∽△BCD,∴=,即:=,解得:x=8,∴BC=8,∴S矩形ABCD=AB•BC=4×8=32,故选:A.【点睛】本题考查矩形的折叠问题,熟练掌握折叠的性质,全等三角形的判定,以及相似三角形的判定与性质是解题的关键.4、D【解析】解:由当时有最大值,得时,,,反比例函数解析式为,当时,图象位于第四象限,随的增大而增大,当时,最小值为故选D.5、B【分析】针扎到内切圆区域的概率就是内切圆的面积与外切圆面积的比.【详解】解:∵如图所示的正三角形,∴∠CAB=60°,∴∠OAB=30°,∠OBA=90°,设OB=a,则OA=2a,则小球落在小⊙O内部(阴影)区域的概率为.故选:B.【点睛】本题考查了概率问题,掌握圆的面积公式是解题的关键.6、A【分析】根据a、b的正负不同,则函数y=ax+b与y=bx2+ax的图象所在的象限也不同,针对a、b进行分类讨论,从而可以选出正确选项.【详解】若a>0,b>0,则y=ax+b经过一、二、三象限,y=bx2+ax开口向上,顶点在y轴左侧,故B、C错误;若a<0,b<0,则y=ax+b经过二、三、四象限,y=bx2+ax开口向下,顶点在y轴左侧,故D错误;若a>0,b<0,则y=ax+b经过一、三、四象限,y=bx2+ax开口向下,顶点在y轴右侧,故A正确;故选A.【点睛】本题考查二次函数的图象、一次函数的图象,解题的关键是明确一次函数图象和二次函数图象的特点,利用分类讨论的数学思想解答.7、D【分析】直接利用树状图法列举出所有的可能,进而利用概率公式求出答案.【详解】解:如图所示:一共有9种可能,符合题意的有1种,故小华和小强都抽到物理学科的概率是:,故选D.【点睛】此题主要考查了树状图法求概率,正确列举出所有可能是解题关键.8、C【分析】根据弧长公式计算即可.【详解】解:该扇形的弧长=.故选C.【点睛】本题考查了弧长的计算:弧长公式:(弧长为l,圆心角度数为n,圆的半径为R).9、B【解析】由比例的基本性质,即两内项之积等于两外项之积即可得出结果.【详解】解:∵3a=5b,∴=,故选:B.【点睛】此题主要考查比例的性质,解题的关键是熟知两内项之积等于两外项之积.10、B【分析】利用概率公式直接计算即可.【详解】解:根据题意可得:袋子中有有3个白球,4个黄球和5个红球,共12个,从袋子中随机摸出一个球,它是黄色球的概率.故选B.【点睛】本题考查概率的计算,掌握公式正确计算是本题的解题关键.11、C【分析】设正方形网格中的小正方形的边长为1,连接格点BC,AD,过C作CE⊥AB于E,解直角三角形即可得到结论.【详解】解:设正方形网格中的小正方形的边长为1,连接格点BC,AD,过C作CE⊥AB于E,∵,BC=2,AD=,∵S△ABC=AB•CE=BC•AD,∴CE=,∴,故选:C.【点睛】本题考查了解直角三角形的问题,掌握解直角三角形的方法以及锐角三角函数的定义是解题的关键.12、B【分析】利用同角三角函数间的基本关系求出sinA的值即可.【详解】:∵Rt△ABC中,cosA=,

∴sinA==,

故选B.【点睛】本题考查了同角三角函数的关系,以及特殊角的三角函数值,熟练掌握同角三角函数的关系是解题的关键.二、填空题(每题4分,共24分)13、【分析】列表得出所有等可能的情况数,找出刚好在一次函数y=x-2图象上的点个数,即可求出所求的概率.【详解】列表得:

-112-1---(1,-1)(2,-1)1(-1,1)---(2,1)2(-1,2)(1,2)---所有等可能的情况有6种,其中该点刚好在一次函数y=x-2图象上的情况有:(1,-1)共1种,则故答案为:【点睛】此题考查了列表法与树状图法,以及一次函数图象上点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.14、白【分析】根据可能性大小的求法,求出各个事件发生的可能性的大小,再按照大小顺序从小到大排列起来即可.【详解】根据题意,袋子中共6个球,其中有1个红球,2个绿球和3个白球,故将球摇匀,从中任取1球,

①恰好取出红球的可能性为

②恰好取出绿球的可能性为

③恰好取出白球的可能性为

摸出白颜色的球的可能性最大.故答案是:白.【点睛】本题主要考查了可能性大小计算,即概率的计算方法,用到的知识点为:可能性等于所求情况数与总情况数之比,难度适中.15、4cm≤A′C≤8cm【分析】根据矩形的性质得到∠C=90°,BC=AD=10cm,CD=AB=6cm,当折痕EF移动时,点A’在BC边上也随之移动,由此得到:点E与B重合时,A′C最小,当F与D重合时,A′C最大,据此画图解答.【详解】解:∵四边形ABCD是矩形,∴∠C=90°,BC=AD=10cm,CD=AB=6cm,当点E与B重合时,A′C最小,如图1所示:此时BA′=BA=6cm,∴A′C=BC﹣BA′=10cm﹣6cm=4cm;当F与D重合时,A′C最大,如图2所示:此时A′D=AD=10cm,∴A′C==8(cm);综上所述:A′C的取值范围为4cm≤A′C≤8cm.故答案为:4cm≤A′C≤8cm.【点睛】此题考查折叠问题,利用了矩形的性质,解题中确定点E与F的位置是解题的关键.16、1【分析】先利用一元二次方程根的定义得到α2﹣2α=1009,然后求出2α2﹣4α的值代入即可.【详解】解:方程x2﹣2x﹣1009=0有一个根是α,则α2﹣2α﹣1009=0,α2﹣2α=1009,2α2﹣4α+1=2(α2﹣2α)+1=1.故答案为:1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.17、1【分析】由a+b2=2得出b2=2-a,代入a2+5b2得出a2+5b2=a2+5(2-a)=a2-5a+10,再利用配方法化成a2+5b2=(a-,即可求出其最小值.【详解】∵a+b2=2,

∴b2=2-a,a≤2,

∴a2+5b2=a2+5(2-a)=a2-5a+10=(a-,

当a=2时,

a2+b2可取得最小值为1.

故答案是:1.【点睛】考查了二次函数的最值,解题关键是根据题意得出a2+5b2=(a-.18、不可能【分析】根据随机事件的概念进行判断即可.【详解】太阳从西边升起是不可能的,∴太阳从西边升起是不可能事件,故答案为:不可能.【点睛】本题考查了随机事件的概念,掌握知识点是解题关键.三、解答题(共78分)19、(1)见解析;(2)45°.【分析】(1)设正方形的边长为a,求出AC的长为a,再求出△ACF与△GCA中∠ACF的两边的比值相等,根据两边对应成比例、夹角相等,两三角形相似,即可判定△ACF与△GCA相似;(2)根据相似三角形的对应角相等可得∠1=∠CAF,再根据三角形的一个外角等于和它不相邻的两个内角的和,∠2+∠CAF=∠ACB=45°,所以∠1+∠2=45°.【详解】设正方形的边长为,则,∴,又∵,∴;解:由得:,∴,∴.【点睛】本题主要考查相似三角形的判定,利用两边对应成比例,夹角相等两三角形相似的判定和相似三角形对应角相等的性质以及三角形的外角性质,求出两三角形的对应边的比值相等是解题关键.20、见解析【分析】根据已知条件先证明四边形OBEC是平行四边形,再证明∠BOC=90°,OC=OB即可判定四边形OBEC是正方形.【详解】∵,,∴四边形是平行四边形,∵四边形是正方形,∴,,∴,∴四边形是矩形,∵,∴四边形是正方形.【点睛】本题考查正方形的性质和判定,解题的关键是熟练掌握正方形的性质和判定.21、(1)65-x,130-2x,130-2x;(2)每件乙产品可获得的利润是元.【分析】(1)根据题意即可列出代数式;(2)根据题意列出方程即可求解.【详解】解:由己知,每天安排人生产乙产品时,生产甲产品的有人,共生产甲产品件.在乙每件元获利的基础上,增加人,利润减少元每件,则乙产品的每件利润为.故答案为:由题意解得(不合题意,舍去)(元)答:每件乙产品可获得的利润是元【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系列方程.22、(1)100元;(2)当销售单价定为105元时,可获得最大利润,最大利润是2025元.【分析】(1)根据题意列出方程,解一元二次方程即可;(2)先根据利润=每件的利润×销售量表示出利润,然后利用二次函数的性质求最大值即可.【详解】(1)依题意得:,解得或(不合题意).(2)若每天的利润为元,则,∴当销售单价定为105元时,可获得最大利润,最大利润是2025元.【点睛】本题主要考查二次函数与一元二次方程的应用,掌握解一元二次方程的方法和二次函数的性质是解题的关键.23、(1)tan∠DCE=;(2)=.【分析】(1)根据已知条件求出CD,再利用勾股定理求解出ED,即可得到结果;(2)过D作DG∥CF交AB于点G,根据平行线分线段成比例即可求得结果;【详解】解:(1)∵AD⊥BC,∴∠ADC=90°,在Rt△ADC中,AC=13,cos∠ACB=,∴CD=5,由勾股定理得:AD=,∵E是AD的中点,∴ED=AD=6,∴tan∠DCE=;(2)过D作DG∥CF交AB于点G,如图所示:∵BC=8,CD=5,∴BD=BC﹣CD=3,∵DG∥CF,∴,,∴AF=FG,设BG=3x,则AF=FG=5x,BF=FG+BG=8x∴.【点睛】本题主要考查了解直角三角形的应用,结合勾股定理和平行线分线段成比例求解是解题的关键.24、3cm【分析】先根据勾股定理求出BC的长,再根据题意证明△ABC∽△ADE,得到,代入即可求解.【详解】解:∵∠C=90°,AB=10,AC=8∴BC=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论