版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省驻马店市遂平中学2025届九年级数学第一学期期末教学质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.已知抛物线y=x2-8x+c的顶点在x轴上,则c的值是()A.16 B.-4 C.4 D.82.下列事件中是必然发生的事件是()A.投掷一枚质地均匀的骰子,掷得的点数是奇数;B.某种彩票中奖率是1%,则买这种彩票100张一定会中奖;C.掷一枚硬币,正面朝上;D.任意画一个三角形,其内角和是180°.3.如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(,4),则△AOC的面积为A.12 B.9 C.6 D.44.如图,已知AB∥CD∥EF,AC=4,CE=1,BD=3,则DF的值为()A. B. C. D.15.抛物线可以由抛物线平移得到,下列平移正确的是()A.先向左平移3个单位长度,然后向上平移1个单位B.先向左平移3个单位长度,然后向下平移1个单位C.先向右平移3个单位长度,然后向上平移1个单位D.先向右平移3个单位长度,然后向下平移1个单位6.下列方程是一元二次方程的是()A. B.x2+5=0 C.x2+=8 D.x(x+3)=x2﹣17.四张分别画有平行四边形、等腰直角三角形、正五边形、圆的卡片,它们的背面都相同,现将它们背面朝上,从中任取一张,卡片上所画图形恰好是中心对称图形的概率是()A. B. C. D.18.时钟上的分针匀速旋转一周需要60分钟,则经过10分钟,分针旋转了().A.10° B.20° C.30° D.60°9.如图,点P(x,y)(x>0)是反比例函数y=(k>0)的图象上的一个动点,以点P为圆心,OP为半径的圆与x轴的正半轴交于点A,若△OPA的面积为S,则当x增大时,S的变化情况是()A.S的值增大 B.S的值减小C.S的值先增大,后减小 D.S的值不变10.如图,在⊙O中,弦AB为8mm,圆心O到AB的距离为3mm,则⊙O的半径等于()A.3mm B.4mm C.5mm D.8mm二、填空题(每小题3分,共24分)11.如图,在中,,,.将绕点逆时针旋转,使点落在边上的处,点落在处,则,两点之间的距离为__________;12.已知函数(为常数),若从中任取值,则得到的函数是具有性质“随增加而减小”的一次函数的概率为___________.13.定义符号max{a,b}的含义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b}=b,如:max{3,1}=3,max{﹣3,2}=2,则方程max{x,﹣x}=x2﹣6的解是_____.14.已知二次函数的图象经过点,的横坐标分别为,点的位置随的变化而变化,若运动的路线与轴分别相交于点,且(为常数),则线段的长度为_________.15.在数、、中任取两个数(不重复)作为点的坐标,则该点刚好在一次函数图象的概率是________________.16.方程x2=1的解是_____.17.某中学为了了解学生数学课程的学习情况,在3000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测,这3000名学生在该次数学考试中成绩小于60分的学生数是________.18.如图,将Rt△ABC(其中∠B=30°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点B、A、B1在同一条直线上,那么旋转角等于_____.三、解答题(共66分)19.(10分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1;(3)△A2B2C2的面积是平方单位.20.(6分)在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A(0,﹣4)和B(2,0)两点.(1)求c的值及a,b满足的关系式;(2)若抛物线在A和B两点间,y随x的增大而增大,求a的取值范围;(3)抛物线同时经过两个不同的点M(p,m),N(﹣2﹣p,n).①若m=n,求a的值;②若m=﹣2p﹣3,n=2p+1,点M在直线y=﹣2x﹣3上,请验证点N也在y=﹣2x﹣3上并求a的值.21.(6分)正面标有数字,,3,4背面完全相同的4张卡片,洗匀后背面向上放置在桌面上.甲同学抽取一张卡片,正面的数字记为a,然后将卡片背面向上放回桌面,洗匀后,乙同学再抽取一张卡片,正面的数字记为b.(1)请用列表或画树状图的方法把所有结果表示出来;(2)求出点在函数图象上的概率.22.(8分)如图,一次函数y=x+b和反比例函数y=(k≠0)交于点A(4,1).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值的x的取值范围.23.(8分)如图,一次函数y=kx+b与反比例函数y=(x<0)的图象相交于点A、点B,与X轴交于点C,其中点A(﹣1,3)和点B(﹣3,n).(1)填空:m=,n=.(2)求一次函数的解析式和△AOB的面积.(3)根据图象回答:当x为何值时,kx+b≥(请直接写出答案).24.(8分)图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和是几,就从图②中的A点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法跳动.(1)随机掷一次骰子,则棋子跳动到点C处的概率是(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C处的概率.25.(10分)如图,把点以原点为中心,分别逆时针旋转,,,得到点,,.(1)画出旋转后的图形,写出点,,的坐标,并顺次连接、,,各点;(2)求出四边形的面积;(3)结合(1),若把点绕原点逆时针旋转到点,则点的坐标是什么?26.(10分)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.类别频数(人数)频率小说0.5戏剧4散文100.25其他6合计1根据图表提供的信息,解答下列问题:(1)八年级一班有多少名学生?(2)请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.
参考答案一、选择题(每小题3分,共30分)1、A【分析】顶点在x轴上,所以顶点的纵坐标是0.据此作答.【详解】∵二次函数y=-8x+c的顶点的横坐标为x=-
=
-=4,∵顶点在x轴上,
∴顶点的坐标是(4,0),
把(4,0)代入y=-8x+c中,得:16-32+c=0,解得:c=16,故答案为A【点睛】本题考查求抛物线顶点纵坐标的公式,比较简单.2、D【分析】直接利用随机事件以及概率的意义分别分析得出答案.【详解】解:A、投掷一枚质地均匀的骰子,掷得的点数是奇数,是随机事件,不合题意;B、某种彩票中奖率是1%,则买这种彩票100张有可能会中奖,不合题意;C、掷一枚硬币,正面朝上,是随机事件,不合题意;D、任意画一个三角形,其内角和是180°,是必然事件,符合题意.故选D.【点睛】本题主要考查了概率的意义以及随机事件,解决本题的关键是要正确区分各事件的意义.3、B【解析】∵点,是中点∴点坐标∵在双曲线上,代入可得∴∵点在直角边上,而直线边与轴垂直∴点的横坐标为-6又∵点在双曲线∴点坐标为∴从而,故选B4、C【分析】根据平行线分线段成比例定理即可得出结论.【详解】解:∵直线AB∥CD∥EF,AC=4,CE=1,BD=3,∴即,解得DF=.
故选:C.【点睛】本题考查的是平行线分线段成比例定理,熟知三条平行线截两条直线,所得的对应线段成比例是解答此题的关键.5、B【分析】抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.【详解】解:抛物线的顶点为(0,0),抛物线的顶点为(-3,-1),抛物线向左平移3个单位长度,然后向下平移1个单位得到抛物线.故选:B.【点睛】本题考查的知识点是二次函数图象平移问题,解答是最简单的方法是确定平移前后抛物线顶点,从而确定平移方向.6、B【分析】根据一元二次方程的定义对各选项进行逐一分析即可.【详解】A、方程x+2y=1是二元一次方程,故本选项错误;B、方程x2+5=0是一元二次方程,故本选项正确;C、方程x2+=8是分式方程,故本选项错误;D、方程x(x+3)=x2-1是一元一次方程,故本选项错误.故选B.【点睛】本题考查的是一元二次方程的定义,熟知只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程是解答此题的关键.7、B【分析】先找出卡片上所画的图形是中心对称图形的个数,再除以总数即可.【详解】解:∵四张卡片中中心对称图形有平行四边形、圆,共2个,∴卡片上所画的图形恰好是中心对称图形的概率为,故选B.【点睛】此题考查概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,关键是找出卡片上所画的图形是中心对称图形的个数.8、D【分析】先求出时钟上的分针匀速旋转一分钟时的度数为6°,再求10分钟分针旋转的度数就简单了.【详解】解:∵时钟上的分针匀速旋转一周的度数为360°,时钟上的分针匀速旋转一周需要60分钟,则时钟上的分针匀速旋转一分钟时的度数为:360÷60=6°,那么10分钟,分针旋转了10×6°=60°,故选:D.【点睛】本题考查了生活中的旋转现象,明确分针旋转一周,分针旋转了360°,所以时钟上的分针匀速旋转一分钟时的度数,是解答本题的关键.9、D【分析】作PB⊥OA于B,如图,根据垂径定理得到OB=AB,则S△POB=S△PAB,再根据反比例函数k的几何意义得到S△POB=|k|,所以S=2k,为定值.【详解】作PB⊥OA于B,如图,则OB=AB,∴S△POB=S△PAB.∵S△POB=|k|,∴S=2k,∴S的值为定值.故选D.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.10、C【分析】连接OA,根据垂径定理,求出AD,根据勾股定理计算即可.【详解】连接OA,∵OD⊥AB,∴AD=AB=4,由勾股定理得,OA==5,故选C.【点睛】本题考查的是垂径定理,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.二、填空题(每小题3分,共24分)11、【分析】利用勾股定理算出AB的长,再算出BE的长,再利用勾股定理算出BD即可.【详解】∵AC=4,BC=3,∠C=90°,∴AB=5,∴EB=5-4=1,∴BD=.故答案为:.【点睛】本题考查勾股定理的应用,关键在于通过旋转找到等量关系.12、【分析】根据“随增加而减小”可知,解出k的取值范围,然后根据概率公式求解即可.【详解】由“随增加而减小”得,解得,∴具有性质“随增加而减小”的一次函数的概率为故答案为:.【点睛】本题考查了一次函数的增减性,以及概率的计算,熟练掌握一次函数增减性与系数的关系和概率公式是解题的关键.13、1或﹣1【分析】分两种情况:x≥﹣x,即x≥0时;x<﹣x,即x<0时;进行讨论即可求解.【详解】当x≥﹣x,即x≥0时,∴x=x2﹣6,即x2﹣x﹣6=0,(x﹣1)(x+2)=0,解得:x1=1,x2=﹣2(舍去);当x<﹣x,即x<0时,∴﹣x=x2﹣6,即x2+x﹣6=0,(x+1)(x﹣2)=0,解得:x1=﹣1,x4=2(舍去).故方程max{x,﹣x}=x2﹣6的解是x=1或﹣1.故答案为:1或﹣1.【点睛】考查了解了一元二次方程-因式分解法,关键是熟练掌握定义符号max{a,b}的含义,注意分类思想的应用.14、27【分析】先求得点M和点N的纵坐标,于是得到点M和点N运动的路线与字母b的函数关系式,则点A的坐标为(0,),点B的坐标为(0,),于是可得到的长度.【详解】∵过点M、N,且即,∴,∴,,∵点A在y轴上,即,把代入,得:,∴点A的坐标为(0,),∵点B在y轴上,即,∴,把代入,得:,∴点B的坐标为(0,),∴.故答案为:.【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式,正确理解题意、求得点A和点B的坐标是解题的关键.15、【分析】列表得出所有等可能的情况数,找出刚好在一次函数y=x-2图象上的点个数,即可求出所求的概率.【详解】列表得:
-112-1---(1,-1)(2,-1)1(-1,1)---(2,1)2(-1,2)(1,2)---所有等可能的情况有6种,其中该点刚好在一次函数y=x-2图象上的情况有:(1,-1)共1种,则故答案为:【点睛】此题考查了列表法与树状图法,以及一次函数图象上点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.16、±1【解析】方程利用平方根定义开方求出解即可.【详解】∵x2=1∴x=±1.【点睛】本题考查直接开平方法解一元二次方程,解题关键是熟练掌握一元二次方程的解法.17、1人【分析】根据频率分布直方图,求出在该次数学考试中成绩小于60分的频率,再求成绩小于60分的学生数.【详解】根据频率分布直方图,得在该次数学考试中成绩小于60分的频率是(0.002+0.006+0.012)×10=0.20∴在该次数学考试中成绩小于60分的学生数是3000×0.20=1.故答案为:1.【点睛】本题考查了频率分布直方图的应用问题,解题时应根据频率分布直方图提供的数据,求出频率,再求出学生数,是基础题.18、180°【分析】根据旋转的性质可直接判定∠BAB1等于旋转角,由于点B、A、B1在同一条直线上,可知旋转角为180°.【详解】解:由旋转的性质定义知,∠BAB1等于旋转角,∵点B、A、B1在同一条直线上,∴∠BAB1为平角,∴∠BAB1=180°,故答案为:180°.【点睛】此题考查是旋转的性质,熟知图形旋转后所得图形与原图形全等是解答此题的关键.三、解答题(共66分)19、(1)见解析;(2)见解析;(3)1【分析】(1)根据平移的方向与距离进行画图即可;(2)根据点B为位似中心,且位似比为2:1进行画图即可;(3)由网格特点可知,△ABC是等腰直角三角形,∠ACB=90°,根据坐标可求边长和面积,再根据相似比即可求出面积.【详解】解:(1)如图所示,△ABC向下平移4个单位长度得到的△A1B1C1;(2)如图所示,△A2B2C2即为所求;(3)则由网格特点可知:AC=BC=,AC⊥BC,∴△ABC的面积=.又∵△A2B2C2与△ABC位似,且位似比为2:1,∴△A2B2C2的面积=.故答案为:1.【点睛】本题主要考查了利用平移变换和位似变换进行作图,解决问题的关键是掌握:平移图形时,要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.20、(1)c=﹣4,2a+b=2;(2)0<a≤1;(3)①a=;②见解析,a=1.【分析】(1)令x=0,则c=−4,将点B(2,0)代入y=ax2+bx+c可得2a+b=2;(2)由已知可知抛物线开口向上,a>0,对称轴x=﹣=﹣=1﹣≤0,即可求a的范围;(3)①m=n时,M(p,m),N(−2−p,n)关于对称轴对称,则有1−=−1;②将点N(−2−p,n)代入y=−2x−3等式成立,则可证明N点在直线上,再由直线与抛物线的两个交点是M、N,则有根与系数的关系可得p+(−2−p)=,即可求a.【详解】(1)令x=0,则c=﹣4,将点B(2,0)代入y=ax2+bx+c可得4a+2b﹣4=0,∴2a+b=2;(2)∵抛物线在A和B两点间,y随x的增大而增大,∴抛物线开口向上,∴a>0,∵A(0,﹣4)和B(2,0),∴对称轴x=﹣=﹣=1﹣≤0,∴0<a≤1;(3)①当m=n时,M(p,m),N(﹣2﹣p,n)关于对称轴对称,∴对称轴x=1﹣=﹣1,∴a=;②将点N(﹣2﹣p,n)代入y=﹣2x﹣3,∴n=4+2p﹣3=1+2p,∴N点在y=﹣2x﹣3上,联立y=﹣2x﹣3与y=ax2+(2﹣2a)x﹣4有两个不同的实数根,∴ax2+(4﹣2a)x﹣1=0,∵p+(﹣2﹣p)=-=,∴a=1.【点睛】本题考查二次函数的性质;熟练掌握二次函数的图象及性质,能结合函数的对称性、增减性、直线与抛物线的交点个数综合解题是关键.21、(1)共有16种机会均等的结果;(2)(点在函数的图象上)=【分析】(1)列出图表,图见详解,(2)找出在上的点的个数,即可求出概率.【详解】(1)解:列表如下:∴共有16种机会均等的结果(2)点,,,在函数的图象上∴(点在函数的图象上)==【点睛】本题考查了用列表法求概率,属于简单题,熟悉概率的实际应用是解题关键.22、(1)反比例函数的解析式为:y=;一次函数的解析式为:y=x﹣2;(2)S△AOB=;(2)一次函数的值大于反比例函数的值的x的取值范围为:﹣1<x<0或x>1.【分析】(1)把A的坐标代入y=,求出反比例函数的解析式,把A的坐标代入y=x+b求出一次函数的解析式;(2)求出D、B的坐标,利用S△AOB=S△AOD+S△BOD计算,即可求出答案;(2)根据函数的图象和A、B的坐标即可得出答案.【详解】(1)∵反比例函数y=的图象过点A(1,1),∴1=,即k=1,∴反比例函数的解析式为:y=.∵一次函数y=x+b(k≠0)的图象过点A(1,1),∴1=1+b,解得b=﹣2,∴一次函数的解析式为:y=x﹣2;(2)∵令x=0,则y=﹣2,∴D(0,﹣2),即DO=2.解方程=x﹣2,得x=﹣1,∴B(﹣1,﹣1),∴S△AOB=S△AOD+S△BOD=×2×1+×2×1=;(2)∵A(1,1),B(﹣1,﹣1),∴一次函数的值大于反比例函数的值的x的取值范围为:﹣1<x<0或x>1.【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了观察函数图象的能力.23、(1)﹣3,1;(2)y=x+4,4;(3)﹣3≤x≤﹣1.【分析】(1)已知反比例函数y=过点A(﹣1,3),B(﹣3,n)分别代入求得m、n的值即可;(2)用待定系数法求出一次函数的解析式,再求得一次函数与x轴的交点坐标,根据S△AOB=S△AOC﹣S△BOC即可求得△AOB的面积;(3)观察图象,确定一次函数图象在反比例函数图象上方时对应的x的取值范围即可.【详解】(1)∵反比例函数y=过点A(﹣1,3),B(﹣3,n)∴m=3×(﹣1)=﹣3,m=﹣3n∴n=1故答案为﹣3,1(2)设一次函数解析式y=kx+b,且过(﹣1,3),B(﹣3,1)∴解得:∴解析式y=x+4∵一次函数图象与x轴交点为C∴0=x+4∴x=﹣4∴C(﹣4,0)∵S△AOB=S△AOC﹣S△BOC∴S△AOB=×4×3﹣×4×1=4(3)∵kx+b≥∴一次函数图象在反比例函数图象上方∴﹣3≤x≤﹣1故答案为﹣3≤x≤﹣1【点睛】本题考查了反比例函数与一次函数交点问题、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度停车场排水系统施工合同规范文本3篇
- 固化剂采购合同6篇
- 编程软件课程设计
- 抗肿瘤新药行业专题
- 脱甲烷塔课程设计
- 2024幼儿园招生工作计划(31篇)
- 算法课的课程设计
- 线上课程设计基本要素
- 算数运算测试java课程设计
- 药剂课程设计报告
- 江苏省期无锡市天一实验学校2023-2024学年英语七年级第二学期期末达标检测试题含答案
- 耕地占补平衡系统课件
- 2022年山东师范大学自考英语(二)练习题(附答案解析)
- 医院工作流程图较全
- NB/T 11431-2023土地整治煤矸石回填技术规范
- 医疗器械集中采购文件(2024版)
- 上海市2024-2025学年高一语文下学期分科检测试题含解析
- 血液透析高钾血症的护理查房
- 佛山市2022-2023学年七年级上学期期末考试数学试题【带答案】
- 使用权资产实质性程序
- 保险公司增额终身寿主讲课件
评论
0/150
提交评论