2025届重庆市江津区名校数学九上期末达标检测模拟试题含解析_第1页
2025届重庆市江津区名校数学九上期末达标检测模拟试题含解析_第2页
2025届重庆市江津区名校数学九上期末达标检测模拟试题含解析_第3页
2025届重庆市江津区名校数学九上期末达标检测模拟试题含解析_第4页
2025届重庆市江津区名校数学九上期末达标检测模拟试题含解析_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届重庆市江津区名校数学九上期末达标检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.下列说法正确的是()A.投掷一枚质地均匀的硬币次,正面向上的次数一定是次B.某种彩票的中奖率是,说明每买张彩票,一定有张中奖C.篮球队员在罚球线上投篮一次,“投中”为随机事件D.“任意画一个三角形,其内角和为”是随机事件2.如图,菱形ABCD中,∠A=60°,边AB=8,E为边DA的中点,P为边CD上的一点,连接PE、PB,当PE=EB时,线段PE的长为()A.4 B.8 C.4 D.43.如图,是正内一点,若将绕点旋转到,则的度数为()A. B.C. D.4.二次函数的图像如图所示,下面结论:①;②;③函数的最小值为;④当时,;⑤当时,(、分别是、对应的函数值).正确的个数为()A. B. C. D.5.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷两次骰子,掷得面朝上的点数之和是5的概率是()A. B. C. D.6.如图,.分别与相切于.两点,点为上一点,连接.,若,则的度数为().A.; B.; C.; D..7.如图是一个可以自由转动的转盘,转盘分成黑、白两种颜色指针的位置固定,转动的转盘停止后,指针恰好指向白色扇形的穊率为(指针指向OA时,当作指向黑色扇形;指针指OB时,当作指向白色扇形),则黑色扇形的圆心角∠AOB=()A.40° B.45° C.50° D.60°8.如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为()(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).A.5.1米 B.6.3米 C.7.1米 D.9.2米9.如图,A、B、C三点在⊙O上,且∠AOB=80°,则∠ACB等于A.100° B.80° C.50° D.40°10.若关于x的一元二次方程有实数根,则实数k的取值范围是()A. B. C.且 D.11.如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B、C之间的距离为().A.20海里 B.10海里 C.20海里 D.30海里12.二次函数y=ax2+bx+c(a,b,c为常数且a≠0)的图象如图所示,则一次函数y=ax+b与反比例函数的图象可能是A. B. C. D.二、填空题(每题4分,共24分)13.如图,、是两个等边三角形,连接、.若,,,则__________.14.一人乘雪橇沿坡比1:的斜坡笔直滑下,滑下的距离s(米)与时间t(秒)间的关系为s=10t+2t2,若滑到坡底的时间为4秒,则此人下降的高度为_______.15.若是方程的两个根,则的值为________16.如图,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.过点D作DG∥BE,交BC于点G,连接FG交BD于点O.若AB=6,AD=8,则DG的长为_____.17.将二次函数y=2x2的图像沿x轴向左平移2个单位,再向下平移3个单位后,所得函数图像的函数关系式为______________.18.如图,已知⊙的半径为1,圆心在抛物线上运动,当⊙与轴相切时,圆心的坐标是___________________.三、解答题(共78分)19.(8分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地、颜色等其它方面完全相同,若背面朝上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面朝上方在桌面上,甲从中随机抽取一张卡片,记该卡片上的数字为,然后放回洗匀,背面朝上方在桌面上,再由乙从中随机抽取一张卡片,记该卡片上的数字为,组成一数对.(1)请写出.所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各抽依次卡片,卡片上述资质和为奇数则甲赢,数字之和为偶数则乙赢,你认为这个游戏公平吗?请说明理由.20.(8分)如图,在平面直角坐标系中,矩形的顶点在轴上,在轴上,把矩形沿对角线所在的直线对折,点恰好落在反比例函数的图象上点处,与轴交于点,延长交轴于点,点刚好是的中点.已知的坐标为.(1)求反比例函数的函数表达式;(2)若是反比例函数图象上的一点,点在轴上,若以为顶点的四边形是平行四边形,请直接写出点的坐标_________.21.(8分)如图,在平面直角坐标系中,点A,C分别在x轴,y轴上,四边形ABCO为矩形,AB=16,点D与点A关于y轴对称,tan∠ACB=,点E、F分别是线段AD、AC上的动点,(点E不与点A,D重合),且∠CEF=∠ACB.(1)求AC的长和点D的坐标;(2)求证:;(3)当△EFC为等腰三角形时,求点E的坐标.22.(10分)已知:如图,在正方形ABCD中,F是AB上一点,延长CB到E,使BE=BF,连接CF并延长交AE于G.(1)求证:△ABE≌△CBF;(2)将△ABE绕点A逆时针旋转90°得到△ADH,请判断四边形AFCH是什么特殊四边形,并说明理由.23.(10分)如图,于,以直径作,交于点恰有,连接.(1)如图1,求证:;(2)如图2,连接分别交,于点连接试探究与之间的数量关系,并说明理由;(3)在(2)的基础上,若,求的长.24.(10分)我们把两条中线互相垂直的三角形称为“中垂三角形”.如图1,图2,图3中,是的中线,,垂足为点,像这样的三角形均为“中垂三角形.设.(1)如图1,当时,则_________,__________;(2)如图2,当时,则_________,__________;归纳证明(3)请观察(1)(2)中的计算结果,猜想三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式;拓展应用(4)如图4,在中,分别是的中点,且.若,,求的长.25.(12分)已知关于x的一元二次方程x2+(2m+1)x+m2+m=1.求证:无论m为何值,方程总有两个不相等的实数根.26.在下列的网格中,横、纵坐标均为整数的点叫做格点,例如正方形的顶点,都是格点.要求在下列问题中仅用无刻度的直尺作图.

(1)画出格点,连(或延长)交边于,使,写出点的坐标.(2)画出格点,连(或延长)交边于,使,则满足条件的格点有个.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据题意直接利用概率的意义以及三角形内角和定理分别分析得出答案.【详解】解:A、投掷一枚质地均匀的硬币100次,正面向上的次数一定是50次,错误;B、某种彩票的中奖率是,说明每买100张彩票,不一定有1张中奖,故此选项错误;C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D、“任意画一个三角形,其内角和为360°”是不可能事件,故此选项错误.故选:C.【点睛】本题主要考查概率的意义,熟练并正确掌握概率的意义是解题关键.2、D【分析】由菱形的性质可得AB=AD=8,且∠A=60°,可证△ABD是等边三角形,根据等边三角形中三线合一,求得BE⊥AD,再利用勾股定理求得EB的长,根据PE=EB,即可求解.【详解】解:如上图,连接BD∵四边形ABCD是菱形,

∴AB=AD=8,且∠A=60°,

∴△ABD是等边三角形,∵点E是DA的中点,AD=8

∴BE⊥AD,且∠A=60°,AE=

∴在Rt△ABE中,利用勾股定理得:∵PE=EB∴PE=EB=4,

故选:D.【点睛】本题考查了菱形的性质,等边三角形判定和性质,直角三角形的性质,灵活运用这些性质进行推理是本题的关键.3、B【分析】根据旋转的性质可得:△PBC≌△P′BA,故∠PBC=∠P′BA,即可求解.【详解】由已知得△PBC≌△P′BA,所以∠PBC=∠P′BA,所以∠PBP′=∠P′BA+∠PBA,=∠PBC+∠PBA,=∠ABC,=60°.故选:B.【点睛】本题考查旋转的性质.旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.4、C【分析】由抛物线开口方向可得到a>0;由抛物线过原点得c=0;根据顶点坐标可得到函数的最小值为-3;根据当x<0时,抛物线都在x轴上方,可得y>0;由图示知:0<x<2,y随x的增大而减小;【详解】解:①由函数图象开口向上可知,,故此选项正确;②由函数的图像与轴的交点在可知,,故此选项正确;③由函数的图像的顶点在可知,函数的最小值为,故此选项正确;④因为函数的对称轴为,与轴的一个交点为,则与轴的另一个交点为,所以当时,,故此选项正确;⑤由图像可知,当时,随着的值增大而减小,所以当时,,故此选项错误;其中正确信息的有①②③④.故选:C.【点睛】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=,;抛物线与y轴的交点坐标为(0,c);当b2-4ac>0,抛物线与x轴有两个交点;当b2-4ac=0,抛物线与x轴有一个交点;当b2-4ac<0,抛物线与x轴没有交点.5、B【分析】首先根据题意列出表格,然后由表格求得所有等可能的结果与掷得面朝上的点数之和是5的情况,再利用概率公式求解即可求得答案.【详解】解:列表得:

123456123456723456783456789456789105678910116789101112∵共有36种等可能的结果,掷得面朝上的点数之和是5的有4种情况,

∴掷得面朝上的点数之和是5的概率是:.

故选:B.【点睛】此题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.6、D【解析】连接.,由切线的性质可知,由四边形内角和可求出的度数,根据圆周角定理(一条弧所对的圆周角等于它所对的圆心角的一半)可知的度数.【详解】解:连接.,∵.分别与相切于.两点,∴,,∴,∴,∴.故选:D.【点睛】本题主要考查了圆的切线性质及圆周角定理,灵活应用切线性质及圆周角定理是解题的关键.7、B【分析】根据针恰好指向白色扇形的概率得到黑、白两种颜色的扇形的面积比为1:7,计算即可.【详解】解:∵指针恰好指向白色扇形的穊率为,∴黑、白两种颜色的扇形的面积比为1:7,∴∠AOB=×360°=45°,故选:B.【点睛】本题考查的知识点是求圆心角的度数,根据概率得出黑、白两种颜色的扇形的面积比为1:7是解此题的关键.8、A【解析】如图,延长DE交AB延长线于点P,作CQ⊥AP于点Q,∵CE∥AP,∴DP⊥AP,∴四边形CEPQ为矩形,∴CE=PQ=2,CQ=PE,∵i=,∴设CQ=4x、BQ=3x,由BQ²+CQ²=BC²可得(4x)²+(3x)²=102,解得:x=2或x=−2(舍),则CQ=PE=8,BQ=6,∴DP=DE+PE=11,在Rt△ADP中,∵AP=≈13.1,∴AB=AP−BQ−PQ=13.1−6−2=5.1,故选A.点睛:此题考查了俯角与坡度的知识.注意构造所给坡度和所给锐角所在的直角三角形是解决问题的难点,利用坡度和三角函数求值得到相应线段的长度是解决问题的关键.9、D【解析】试题分析:∵∠ACB和∠AOB是⊙O中同弧所对的圆周角和圆心角,且∠AOB=80°,∴∠ACB=∠AOB=40°.故选D.10、C【分析】根据方程根的情况可以判定其根的判别式的取值范围,进而可以得到关于k的不等式,解得即可,同时还应注意二次项系数不能为1.【详解】∵关于x的一元二次方程有实数根,∴△=b2-4ac≥1,即:1+3k≥1,解得:,∵关于x的一元二次方程kx2-2x+1=1中k≠1,故选:C.【点睛】本题考查了一元二次方程根的判别式,解题的关键是了解根的判别式如何决定一元二次方程根的情况.11、C【分析】如图,根据题意易求△ABC是等腰直角三角形,通过解该直角三角形来求BC的长度.【详解】如图,∵∠ABE=15°,∠DAB=∠ABE,∴∠DAB=15°,∴∠CAB=∠CAD+∠DAB=90°.又∵∠FCB=60°,∠CBE=∠FCB=60°,∠CBA+∠ABE=∠CBE,∴∠CBA=45°.∴在直角△ABC中,sin∠ABC==,∴BC=20海里.故选C.考点:解直角三角形的应用-方向角问题.12、C【分析】根据二次函数y=ax2+bx+c的图象,可以判断a、b、c的正负情况,从而可以判断一次函数y=ax+b与反比例函数y=的图象分别在哪几个象限,从而可以解答本题.【详解】解:由二次函数y=ax2+bx+c的图象可知,a>0,b<0,c<0,则一次函数y=ax+b的图象经过第一、三、四象限,反比例函数y=的图象在二四象限,故选C.【点睛】本题考查反比例函数的图象、一次函数的图象、二次函数的图象,解题的关键是明确它们各自图象的特点,利用数形结合的思想解答问题.二、填空题(每题4分,共24分)13、1【分析】连接AC,证明△ADC≌△BDE,则AC=BE,在Rt△ABC中,利用勾股定理可求解问题.【详解】连接AC,根据等边三角形的性质可知AD=BD,ED=CD,∠ADB=∠EDC=60°.∴∠ADC=∠BDE.∴△ADC≌△BDE(SAS).∴AC=BE.∵∠ABC=∠ABD+∠DBC=60°+30°=90°,∴在Rt△ABC中,利用勾股定理可得AC==1.故答案为:1.【点睛】本题主要考查了全等三角形的判定和性质、等边三角形的性质、勾股定理,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.14、36m【分析】求滑下的距离,设出下降的高度表示出水平宽度,利用勾股定理即可求解.【详解】解:当t=4时,s=10t+2t2=72,设此人下降的高度为x米,过斜坡顶点向地面作垂线,在直角三角形中,由勾股定理得:,解得:x=36,故答案为:36m.【点睛】本题考查了解直角三角形的应用理解坡比的意义,使用勾股定理,设未知数,列方程求解.15、1【分析】先由根与系数的关系得出,然后代入即可求解.【详解】∵是方程的两个根∴原式=故答案为:1.【点睛】本题主要考查一元二次方程根与系数的关系,掌握一元二次方程根与系数的关系是解题的关键.16、【解析】根据折叠的性质求出四边形BFDG是菱形,假设DF=BF=x,∴AF=AD﹣DF=8﹣x,根据在直角△ABF中,AB2+AF2=BF2,即可求解.【详解】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠ADB=∠DBC∴FD∥BG,又∵DG∥BE,∴四边形BFDG是平行四边形,∵折叠,∴∠DBC=∠DBF,故∠ADB=∠DBF∴DF=BF,∴四边形BFDG是菱形;∵AB=6,AD=8,∴BD=1.∴OB=BD=2.假设DF=BF=x,∴AF=AD﹣DF=8﹣x.∴在直角△ABF中,AB2+AF2=BF2,即62+(8﹣x)2=x2,解得x=,即DG=BF=,故答案为:【点睛】此题主要考查矩形的折叠性质,解题的关键是熟知菱形的判定与性质及勾股定理的应用.17、y=2(x+2)2-3【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移2个单位,再向下平移3个单位后得到的图象表达式为y=2(x+2)2-3【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.18、或或或【分析】根据圆与直线的位置关系可知,当⊙与轴相切时,P点的纵坐标为1或-1,把1或-1代入到抛物线的解析式中求出横坐标即可.【详解】∵⊙的半径为1,∴当⊙与轴相切时,P点的纵坐标为1或-1.当时,,解得,∴此时P的坐标为或;当时,,解得,∴此时P的坐标为或;故答案为:或或或.【点睛】本题主要考查直线与圆的位置关系和已知函数值求自变量,根据圆与x轴相切找到点P的纵坐标的值是解题的关键.三、解答题(共78分)19、(1)见解析;(2)不公平,理由见解析【解析】(1)利用枚举法解决问题即可;(2)求出数字之和为奇数的概率,数字之和为偶数的概率即可判断.【详解】(1)由题设可知,所有可能出现的结果如下:,,,,,,,,共9种;(2)两人各抽一次卡片,卡片上数字之和为奇数有4种可能,所以(甲赢);卡片上数字之和为偶数有5种可能,所以(乙赢).∵,∴乙赢的可能性大一些,故这个游戏不公平.【点睛】本题考查游戏公平性,概率等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20、(1);(2),,(,0).【分析】(1)证得BD是CF的垂直平分线,求得,作DG⊥BF于G,求得点D的坐标为,从而求得反比例函数的解析式;(2)分3种情形,分别画出图形即可解决问题.【详解】(1)∵四边形ABOC是矩形,∴AB=OC,AC=OB,,根据对折的性质知,,∴,,AB=DB,又∵D是CF的中点,∴BD是CF的垂直平分线,∴BC=BF,,∴,∵,∴,∵点B的坐标为,∴,在中,,,,∴,过D作DG⊥BF于G,如图,在中,,,,∴,,∴,∴点D的坐标为,代入反比例函数的解析式得:,∴反比例函数的解析式;(2)如图①、②中,作EQ∥x轴交反比例函数的图象于点Q,在中,,,∴,∴点E的坐标为,点Q纵坐标与点E纵坐标都是,代入反比例函数的解析式得:,解得:,∴点Q的坐标为,∴,∵四点构成平行四边形,∴∴点的坐标分别为,;如图③中,构成平行四边形,作QM∥y轴交轴于点M,∵四边形为平行四边形,∴,,∴,∴,,∴点的坐标为,∴∴,∴点的坐标为,综上,符合条件点的坐标有:,,;【点睛】本题考查反比例函数综合题、矩形的性质、翻折变换、直角三角形中30度角的性质、平行四边形的判定和性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用分类讨论的思想思考问题.21、(1)AC=20,D(12,0);(2)见解析;(3)(8,0)或(,0).【分析】(1)在Rt△ABC中,利用三角函数和勾股定理即可求出BC、AC的长度,从而得到A点坐标,由点D与点A关于y轴对称,进而得到D点的坐标;(2)欲证,只需证明△AEF与△DCE相似,只需要证明两个对应角相等即可.在△AEF与△DCE中,易知∠CAO=∠CDE,再利用三角形的外角性质证得∠AEF=∠DCE,问题即得解决;(3)当△EFC为等腰三角形时,有三种情况,需要分类讨论:①当CE=EF时,此时△AEF与△DCE相似比为1,则有AE=CD,即可求出E点坐标;②当EF=FC时,利用等腰三角形的性质和解直角三角形的知识易求得CE,再利用(2)题的结论即可求出AE的长,进而可求出E点坐标;③当CE=CF时,可得E点与D点重合,这与已知条件矛盾,故此种情况不存在.【详解】解:(1)∵四边形ABCO为矩形,∴∠B=90°,∵AB=16,tan∠ACB=,∴,解得:BC=12=AO,∴AC=20,A点坐标为(﹣12,0),∵点D与点A关于y轴对称,∴D(12,0);(2)∵点D与点A关于y轴对称,∴∠CAO=∠CDE,∵∠CEF=∠ACB,∠ACB=∠CAO,∴∠CDE=∠CEF,又∵∠AEC=∠AEF+∠CEF=∠CDE+∠DCE,∴∠AEF=∠DCE,∴△AEF∽△DCE.∴;(3)当△EFC为等腰三角形时,有以下三种情况:①当CE=EF时,∵△AEF∽△DCE,∴△AEF≌△DCE,∴AE=CD=20,∴OE=AE﹣OA=20﹣12=8,∴E(8,0);②当EF=FC时,如图1所示,过点F作FM⊥CE于M,则点M为CE中点,∴CE=2ME=2EF•cos∠CEF=2EF•cos∠ACB=.∵△AEF∽△DCE,∴,即:,解得:AE=,∴OE=AE﹣OA=,∴E(,0).③当CE=CF时,则有∠CFE=∠CEF,∵∠CEF=∠ACB=∠CAO,∴∠CFE=∠CAO,即此时F点与A点重合,E点与D点重合,这与已知条件矛盾.所以此种情况的点E不存在,综上,当△EFC为等腰三角形时,点E的坐标是(8,0)或(,0).【点睛】本题综合考查了矩形的性质、等腰三角形的性质、勾股定理、相似三角形的判定和性质、轴对称的性质、三角形的外角性质以及解直角三角形等知识,熟练掌握相似三角形的判定与性质是解题关键.难点在于第(3)问,当△EFC为等腰三角形时,有三种情况,需要分类讨论,注意不要漏解.22、(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)由于四边形ABCD是正方形,所以AB=CB=DC,因为AB∥CD,∠CBA=∠ABE,从而得证.(2)根据旋转的性质可知△ABE≌△ADH,从而可证AF=CH,然后利用AB∥CD

即可知四边形AFCH是平行四边形.试题解析:(1)证明:∴,AB//CD∴∴在△ABE和△CBF中∴△ABE≌△CBF(SAS)(2)答:四边形AFCH是平行四边形理由:∵△ABE绕点A逆时针旋转90°得到△ADH∴△ABE≌△ADH∴BE=DH又∵BE=BF(已知)∴BF=DH(等量代换)又∵AB=CD(由(1)已证)∴AB-BF=CD-DH即AF=CH又∵AB//CD即AF//CH∴四边形AFCH是平行四边形23、(1)证明见解析;(2);理由见解析;(3).【分析】(1)由直径所对圆周角等于90度可得,进而易证,再根据即可证明;(2)由,可得,进而可知,再由同弧所对圆周角相等可得,再分别证明,,从而可得,即可解决问题;(3)设,,由,可得,可得,由,可得,设,,根据,可得,求出即可解决问题.【详解】解:(1)证明:是直径,,∵,,,,,又∵,(AAS).(2)结论:.理由如下:由(1)可得:,,,是直径,∴,,,又∵,∴,∴,,,,,.(3)解:设,,,,整理得,或(舍弃),,,又∵由(2)可知,,,∵,∴,∴,设,,,,,【点睛】本题综合考查了圆与相似,涉及了圆的性质、切线的性质、全等三角形的判定和性质、相似三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,属于中考压轴题.24、(1),;(2),;(3),证明见解析;(4)【分析】(1)根据三角形的中位线得出;,进而得到计算即可得出答案;(2)连接EF,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论