版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省宜昌市东部2025届九年级数学第一学期期末调研试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.一个不透明的口袋里装有除颜色都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法,先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球,因此小亮估计口袋中的红球大约有个()A.45 B.48 C.50 D.552.观察下列等式:①②③④…请根据上述规律判断下列等式正确的是()A. B.C. D.3.在同一直角坐标系中,函数y=kx﹣k与y=(k≠0)的图象大致是()A. B.C. D.4.给出下列函数,其中y随x的增大而减小的函数是()①y=2x;②y=﹣2x+1;③y=(x<0);④y=x2(x<1).A.①③④ B.②③④ C.②④ D.②③5.下表是二次函数y=ax2+bx+c的部分x,y的对应值:x…﹣1﹣0123…y…2m﹣1﹣﹣2﹣﹣12…可以推断m的值为()A.﹣2 B.0 C. D.26.如图,已知⊙O的半径是4,点A,B,C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A. B. C. D.7.如图,菱形的对角线,相交于点,过点作于点,连接,若,,则的长为()A.3 B.4 C.5 D.68.在△ABC中,∠A、∠B都是锐角,且,则关于△ABC的形状的说法错误的是()A.它不是直角三角形 B.它是钝角三角形C.它是锐角三角形 D.它是等腰三角形9.关于x的一元二次方程x2﹣x+sinα=0有两个相等的实数根,则锐角α等于()A.15° B.30° C.45° D.60°10.下列函数中,y关于x的二次函数是()A.y=ax2+bx+c B.y=x(x﹣1)C.y= D.y=(x﹣1)2﹣x2二、填空题(每小题3分,共24分)11.在平面直角坐标系中,已知点A(-6,3),B(9,0),以原点O为位似中心,相似比为,把△ABO缩小,则点A对应点A′的坐标是__________.12.已知关于x的一元二次方程x2+px-3=0的一个根为-3,则它的另一根为________.13.一个布袋里放有5个红球,3个黄球和2个黑球,它们除颜色外其余都相同,则任意摸出一个球是黑球的概率是____________.14.在平面直角坐标系中,已知,,,若线段与互相平分,则点的坐标为______.15.如图,点在反比例函数的图象上,轴,垂足为,且,则__________.16.如图,点,分别在线段,上,若,,,,则的长为________.17.已知点A(4,y1),B(,y2),C(-2,y3)都在二次函数y=(x-2)2-1的图象上,则y1,y2,y3的大小关系是.18.一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是_____.三、解答题(共66分)19.(10分)数学活动课上,张老师引导同学进行如下探究:如图1,将长为12cm的铅笔AB斜靠在垂直于水平桌面AE的直尺FO的边沿上,一端A固定在桌面上,图2活动一如图3,将铅笔AB绕端点A顺时针旋转,AB与OF交于点D,当旋转至水平位置时,铅笔AB的中点C与点O重合.数学思考(1)设CD=xcm,点B到OF的距离GB=y①用含x的代数式表示:AD的长是_________cm,BD的长是________cm;②y与x的函数关系式是_____________,自变量x的取值范围是____________.活动二(2)①列表:根据(1)中所求函数关系式计算并补全表格.x(6543.532.5210.50y(00.551.21.581.02.4734.295.08②描点:根据表中数值,描出①中剩余的两个点(x,y).③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象.数学思考(3)请你结合函数的图象,写出该函数的两条性质或结论.20.(6分)为早日实现脱贫奔小康的宏伟目标,我市结合本地丰富的山水资源,大力发展旅游业,王家庄在当地政府的支持下,办起了民宿合作社,专门接待游客,合作社共有80间客房.根据合作社提供的房间单价x(元)和游客居住房间数y(间)的信息,乐乐绘制出y与x的函数图象如图所示:(1)求y与x之间的函数关系式;(2)合作社规定每个房间价格不低于60元且不超过150元,对于游客所居住的每个房间,合作社每天需支出20元的各种费用,房价定为多少时,合作社每天获利最大?最大利润是多少?21.(6分)如图,是的直径,弦于点,是上一点,,的延长线交于点.(1)求证:.(2)当平分,,,求弦的长.22.(8分)已知抛物线y=-x2+bx+c与直线y=-4x+m相交于第一象限内不同的两点A(5,n),B(3,9),求此抛物线的解析式.23.(8分)如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.(1)求证:∠E=∠C;(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数.24.(8分)如图,抛物线与轴交于两点,与轴交于点,设抛物线的顶点为点.(1)求该抛物线的解析式与顶点的坐标.(2)试判断的形状,并说明理由.(3)坐标轴上是否存在点,使得以为顶点的三角形与相似?若存在,请直接写出点的坐标;若不存在,请说明理由.25.(10分)如图,在中,,,,求和的长.26.(10分)俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?
参考答案一、选择题(每小题3分,共30分)1、A【分析】小亮共摸了100次,其中10次摸到白球,则有90次摸到红球;摸到白球与摸到红球的次数之比为1:9,由此可估计口袋中白球和红球个数之比为1:9;即可计算出红球数.【详解】∵小亮共摸了100次,其中10次摸到白球,则有90次摸到红球,∴白球与红球的数量之比为1:9,∵白球有5个,∴红球有9×5=45(个),故选A.2、C【分析】根据题目中各个式子的变化规律,可以判断各个选项中的等式是否成立,从而可以解答本题.【详解】解:由题意可得,,选项A错误;,选项B错误;,选项C正确;,选项D错误.故选:C.【点睛】本题考查的知识点是探寻数式的规律,从题目中找出式子的变化规律是解此题的关键.3、B【分析】根据k的取值范围,分别讨论k>0和k<0时的情况,然后根据一次函数和反比例函数图象的特点进行选择正确答案.【详解】解:①当k>0时,一次函数y=kx﹣k经过一、三、四象限,反比例函数的的图象经过一、三象限,故B选项的图象符合要求,②当k<0时,一次函数y=kx﹣k经过一、二、四象限,反比例函数的的图象经过二、四象限,没有符合条件的选项.故选:B.【点睛】此题考查反比例函数的图象问题;用到的知识点为:反比例函数与一次函数的k值相同,则两个函数图象必有交点;一次函数与y轴的交点与一次函数的常数项相关.4、D【解析】分别根据一次函数、二次函数及反比例函数的增减性进行解答即可【详解】解:①∵y=2x中k=2>0,∴y随x的增大而增大,故本小题错误;
②∵y=-2x+1中k=-2<0,∴y随x的增大而减小,故本小题正确;
③∵y=(x<0)中k=2>0,∴x<0时,y随x的增大而减小,故本小题正确;
④∵y=x2(x<1)中x<1,∴当0<x<1时,y随x的增大而增大,故本小题错误.
故选D.【点睛】本题考查的是反比例函数的性质,熟知一次函数、二次函数及反比例函数的增减性是解答此题的关键.5、C【分析】首先根据表中的x、y的值确定抛物线的对称轴,然后根据对称性确定m的值即可.【详解】解:观察表格发现该二次函数的图象经过点(,﹣)和(,﹣),所以对称轴为x==1,∵,∴点(﹣,m)和(,)关于对称轴对称,∴m=,故选:C.【点睛】本题考查了二次函数的图象与性质,解题的关键是通过表格信息确定抛物线的对称轴.6、B【分析】连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及∠AOC的度数,然后求出菱形ABCO及扇形AOC的面积,则由S扇形AOC-S菱形ABCO可得答案.【详解】连接OB和AC交于点D,如图所示:
∵圆的半径为4,
∴OB=OA=OC=4,
又四边形OABC是菱形,
∴OB⊥AC,OD=OB=2,
在Rt△COD中利用勾股定理可知:CD=,∵sin∠COD=∴∠COD=60°,∠AOC=2∠COD=120°,
∴S菱形ABCO=,∴S扇形=,则图中阴影部分面积为S扇形AOC-S菱形ABCO=.故选B.【点睛】考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=a•b(a、b是两条对角线的长度);扇形的面积=.7、A【分析】根据菱形面积的计算公式求得AC,再利用直角三角形斜边中线的性质即可求得答案.【详解】∵四边形ABCD是菱形,OB=4,∴∵,∴,∴;∵AH⊥BC,∴.故选:A.【点睛】本题考查了菱形的性质及直角三角形斜边的中线等于斜边的一半的性质,根据菱形的面积公式:菱形的面积等于两条对角线乘积的一半是解题的关键.8、C【解析】先根据特殊角的三角函数值求出∠A、∠B的度数,再根据三角形内角和定理求出∠C即可作出判断.【详解】∵△ABC中,∠A、∠B都是锐角,sinA=,cosB=,∴∠A=∠B=30°.∴∠C=180°−∠A−∠B=180−30°−30°=120°.故选C.【点睛】本题主要考查特殊角三角函数值,熟悉掌握是关键.9、B【解析】解:∵关于x的一元二次方程有两个相等的实数根,∴△=,解得:sinα=,∵α为锐角,∴α=30°.故选B.10、B【分析】判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成y=ax2+bx+c(a,b,c为常数,a≠0)的形式,那么这个函数就是二次函数,否则就不是.【详解】A.当a=0时,y=ax2+bx+c=bx+c,不是二次函数,故不符合题意;B.y=x(x﹣1)=x2-x,是二次函数,故符合题意;C.的自变量在分母中,不是二次函数,故不符合题意;D.y=(x﹣1)2﹣x2=-2x+1,不是二次函数,故不符合题意;故选B.【点睛】本题考查了二次函数的定义,一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数叫做二次函数,据此求解即可.二、填空题(每小题3分,共24分)11、(—2,1)或(2,—1)【分析】根据位似图形的性质,只要点A的横、纵坐标分别乘以或﹣即可求出结果.【详解】解:∵点A(-6,3),B(9,0),以原点O为位似中心,相似比为把△ABO缩小,∴点A对应点的坐标为(—2,1)或(2,—1).故答案为:(—2,1)或(2,—1).【点睛】本题考查了位似图形的性质,属于基本题型,注意分类、掌握求解的方法是关键.12、1【分析】根据根与系数的关系得出−3x=−6,求出即可.【详解】设方程的另一个根为x,则根据根与系数的关系得:−3x=−3,解得:x=1,故答案为:1.【点睛】本题考查了根与系数的关系和一元二次方程的解,能熟记根与系数的关系的内容是解此题的关键.13、0.2【分析】利用列举法求解即可.【详解】将布袋里10个球按颜色分别记为,所有可能结果的总数为10种,并且它们出现的可能性相等任意摸出一个球是黑球的结果有2种,即因此其概率为:.【点睛】本题考查了用列举法求概率,根据题意列出所有可能的结果是解题关键.14、【分析】根据题意画出图形,利用平行四边形的性质得出D点坐标.【详解】解:如图所示:∵A(2,3),B(0,1),C(3,1),线段AC与BD互相平分,∴D点坐标为:(5,3),故答案为:(5,3).【点睛】此题考查了平行四边形的性质,图形与坐标,正确画出图形是解题关键.15、6【分析】根据三角形的面积等于即可求出k的值.【详解】∵由题意得:=3,解得,∵反比例函数图象的一个分支在第一象限,∴k=6,故答案为:6.【点睛】此题考查反比例函数的比例系数k的几何意义,掌握三角形的特点与k的关系是解题的关键.16、7.1【分析】根据平行线分线段成比例定理列出比例式,计算即可.【详解】解:,,即,解得,,,故答案为:7.1.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.17、y3>y1>y2.【解析】试题分析:将A,B,C三点坐标分别代入解析式,得:y1=3,y2=5-4,y3=15,∴y3>y1>y2.考点:二次函数的函数值比较大小.18、1【分析】首先利用因式分解法解方程,再利用三角形三边关系得出各边长,进而得出答案.【详解】解:x2﹣7x+10=0(x﹣2)(x﹣5)=0,解得:x1=2,x2=5,故等腰三角形的腰长只能为5,5,底边长为2,则其周长为:5+5+2=1.故答案为:1.【点睛】本题考查因式分解法解一元二次方程,需要熟悉三角形三边的关系以及等腰三角形的性质.三、解答题(共66分)19、(1))(6+x),(6-x),y=6(6-x)6+x,0⩽x⩽6;(2)见解析;(3)①y随着x的增大而减小;②图象关于直线y=x对称;③函数y的取值范围是【解析】(1)①利用线段的和差定义计算即可.②利用平行线分线段成比例定理解决问题即可.(2)①利用函数关系式计算即可.②描出点(0,6),(3,2)即可.③由平滑的曲线画出该函数的图象即可.(3)根据函数图象写出两个性质即可(答案不唯一).【详解】解:(1)①如图3中,由题意AC=OA=1∵CD=xcm,∴AD=(6+x)(cm),BD=12-(6+x)=(6-x)(cm),故答案为:(6+x),(6-x).②作BG⊥OF于G.∵OA⊥OF,BG⊥OF,∴BG//OA,∴BG∴y∴y=36-6x故答案为:y=36-6x6+x,(2)①当x=3时,y=2,当x=0时,y=6,故答案为2,1.②点(0,6),点(3,2)如图所示.③函数图象如图所示.(3)性质1:函数值y的取值范围为0⩽y⩽6.性质2:函数图象在第一象限,y随x的增大而减小.【点睛】本题属于几何变换综合题,考查了平行线分线段成比例定理,函数的图象等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.20、(1)y=﹣0.5x+110;(2)房价定为120元时,合作社每天获利最大,最大利润是5000元.【解析】(1)根据题意和函数图象中的数据可以求得相应的函数解析式;(2)根据题意可以得到利润与x之间的函数解析式,从而可以求得最大利润.【详解】(1)设y与x之间的函数关系式为y=kx+b,,解得:,即y与x之间的函数关系式是y=﹣0.5x+110;(2)设合作社每天获得的利润为w元,w=x(﹣0.5x+110)﹣20(﹣0.5x+110)=﹣0.5x2+120x﹣2200=﹣0.5(x﹣120)2+5000,∵60≤x≤150,∴当x=120时,w取得最大值,此时w=5000,答:房价定为120元时,合作社每天获利最大,最大利润是5000元.【点睛】本题考查了一次函数的应用、二次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.21、(1)证明见解析;(2)2【分析】(1)根据垂径定理可得,即,再根据圆内接四边形的性质即可得证;(2)连接OG,BG,OD,根据等腰直角三角形的性质可得,利用垂径定理和解直角三角形可得,在中应用勾股定理即可求解.【详解】解:(1)弦,,,四边形是圆内接四边形,,;(2)连接OG,BG,OD,,∵,∴,∵,∴,∵,∴,在中,,,∴,∵平分,,∴,∵AB是直径,∴,∴,∴,∴,在中,,即,解得或(舍),∴.【点睛】本题考查垂径定理、圆内接四边形的性质、勾股定理、等腰直角三角形的性质、解直角三角形等内容,作出辅助线是解题的关键.22、y=-x2+4x+2.【分析】根据点B的坐标可求出m的值,写出一次函数的解析式,并求出点A的坐标,最后利用点A、B两点的坐标求抛物线的解析式.【详解】(1)∵直线y=﹣4x+m过点B(3,9),∴9=﹣4×3+m,解得:m=1,∴直线的解析式为y=﹣4x+1.∵点A(5,n)在直线y=﹣4x+1上,∴n=﹣4×5+1=1,∴点A(5,1),将点A(5,1)、B(3,9)代入y=﹣x2+bx+c中,得:,解得:,∴此抛物线的解析式为y=﹣x2+4x+2.【点睛】本题考查了利用待定系数法求二次函数的解析式,熟练掌握待定系数法是解题的关键.23、(1)证明见详解;(2);(3)30°或45°.【分析】(1)由题意:∠E=90°-∠ADE,证明∠ADE=90°-∠C即可解决问题.(2)延长AD交BC于点F.证明AE∥BC,可得∠AFB=∠EAD=90°,,由BD:DE=2:3,可得cos∠ABC=;(3)因为△ABC与△ADE相似,∠DAE=90°,所以∠ABC中必有一个内角为90°因为∠ABC是锐角,推出∠ABC≠90°.接下来分两种情形分别求解即可.【详解】(1)证明:如图1中,∵AE⊥AD,∴∠DAE=90°,∠E=90°-∠ADE,∵AD平分∠BAC,∴∠BAD=∠BAC,同理∠ABD=∠ABC,∵∠ADE=∠BAD+∠DBA,∠BAC+∠ABC=180°-∠C,∴∠ADE=(∠ABC+∠BAC)=90°-∠C,∴∠E=90°-(90°-∠C)=∠C.(2)解:延长AD交BC于点F.∵AB=AE,∴∠ABE=∠E,BE平分∠ABC,∴∠ABE=∠EBC,∴∠E=∠CBE,∴AE∥BC,∴∠AFB=∠EAD=90°,,∵BD:DE=2:3,∴cos∠ABC=;(3)∵△ABC与△ADE相似,∠DAE=90°,∴∠ABC中必有一个内角为90°∵∠ABC是锐角,∴∠ABC≠90°.①当∠BAC=∠DAE=90°时,∵∠E=∠C,∴∠ABC=∠E=∠C,∵∠ABC+∠C=90°,∴∠ABC=30°;②当∠C=∠DAE=90°时,∠E=∠C=45°,∴∠EDA=45°,∵△ABC与△ADE相似,∴∠ABC=45°;综上所述,∠ABC=30°或45°.【点睛】本题属于相似形综合题,考查相似三角形的判定和性质,平行线的判定和性质,锐角三角函数等知识,解题的关键是学会用分类讨论的思想思考问题.24、(1),;(2)是直角三角形,理由见解析;(3)存在,.【分析】(1)已知了抛物线图象上的三点坐标,可用待定系数法求出该抛物线的解析式,进而可用配方法或公式法求得顶点D的坐标.(2)根据B、C、D的坐标,可求得△BCD三边的长,然后判断这三条边的长是否符合勾股定理即可.(3)假设存在符合条件的P点;首先连接AC,根据A、C的坐标及(2)题所得△BDC三边的比例关系,即可判断出点O符合P点的要求,因此以P、A、C为顶点的三角形也必与△COA相似,那么分别过A、C作线段AC的垂线,这两条垂线与坐标轴的交点也符合点P点要求,可根据相似三角形的性质(或射影定理)求得OP的长,也就得到了点P的坐标.【详解】(1)设抛物线的解析式为.由抛物线与y轴交于点,可知即抛物线的解析式为把代入解得∴抛物线的解析式为∴顶点D的坐标为(2)是直角三角形.过点D分别作x轴、y轴的垂线,垂足分别为E、F在中,∴在中,∴在中,∴∴∴是直角三角形.(3)连接AC,根据两点的距离公式可得:,则有,可得,得符合条件的点为.过A作交y轴正半轴于,可知,求得符合条件的点为过C作交x轴正半轴于,可知,求得符合条件的点为∴符合条件的点有三个:.【点睛】本题考
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 化工产品买卖协议
- 办公设备租赁协议大纲
- 商标买卖合同
- 6S管理规范方案
- 学校突发新冠肺炎疫情应急处置预案
- 项目借款合同
- 社会服务岗位雇员合同范本
- 2024至2030年中国煤气用量自动报表热线系统行业投资前景及策略咨询研究报告
- 施工方案-预制挡板安装施工方案
- 2024至2030年中国折叠式黑色测径仪数据监测研究报告
- 医学课件:儿童牙外伤
- 2021新版营业执照英文翻译 (横版)
- 五年级语文上册第七单元【集体备课】
- 销售技术-迅达3000ap产品介绍
- 三维晶格的振动
- 我国油菜生产机械化技术(-119)
- 2022年广西南宁市八年级上学期期末语文试卷
- 6.20.1遗传和变异的现象-2022-2023学年北师大版生物八年级上册同步课堂检测(word版 含答案)
- 卡培他滨消化道肿瘤用药策略ppt课件(PPT 35页)
- 三重一大流程图53872
- 护理查房-急性肾小球肾炎患儿护理
评论
0/150
提交评论