广东省广州市增城区重点名校2024年中考数学猜题卷含解析_第1页
广东省广州市增城区重点名校2024年中考数学猜题卷含解析_第2页
广东省广州市增城区重点名校2024年中考数学猜题卷含解析_第3页
广东省广州市增城区重点名校2024年中考数学猜题卷含解析_第4页
广东省广州市增城区重点名校2024年中考数学猜题卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省广州市增城区重点名校2024年中考数学猜题卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,⊙O与直线l1相离,圆心O到直线l1的距离OB=2,OA=4,将直线l1绕点A逆时针旋转30°后得到的直线l2刚好与⊙O相切于点C,则OC=()A.1 B.2 C.3 D.42.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A. B. C. D.3.如图,G,E分别是正方形ABCD的边AB,BC上的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=DH;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH.其中,正确的结论有()A.4个 B.3个 C.2个 D.1个4.下列运算正确的是()A.a6÷a2=a3B.(2a+b)(2a﹣b)=4a2﹣b2C.(﹣a)2•a3=a6D.5a+2b=7ab5.已知抛物线y=ax2+bx+c(a<0)与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:①4a+2b<0;②﹣1≤a≤;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A.1个 B.2个 C.3个 D.4个6.如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y=(x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是()A. B. C. D.7.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是()A.k> B.k≥ C.k>且k≠1 D.k≥且k≠18.按一定规律排列的一列数依次为:﹣,1,﹣,、﹣、…,按此规律,这列数中的第100个数是()A.﹣ B. C. D.9.圆锥的底面直径是80cm,母线长90cm,则它的侧面积是A. B. C. D.10.在下列网格中,小正方形的边长为1,点A、B、O都在格点上,则的正弦值是A. B. C. D.11.如图所示,有一条线段是()的中线,该线段是().A.线段GH B.线段AD C.线段AE D.线段AF12.已知一组数据2、x、8、1、1、2的众数是2,那么这组数据的中位数是()A.3.1;B.4;C.2;D.6.1.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.当x=_____时,分式值为零.14.对于二次函数y=x2﹣4x+4,当自变量x满足a≤x≤3时,函数值y的取值范围为0≤y≤1,则a的取值范围为__.15.竖直上抛的小球离地面的高度h(米)与时间t(秒)的函数关系式为h=﹣2t2+mt+,若小球经过秒落地,则小球在上抛的过程中,第____秒时离地面最高.16.已知,正六边形的边长为1cm,分别以它的三个不相邻的顶点为圆心,1cm长为半径画弧(如图),则所得到的三条弧的长度之和为__________cm(结果保留π).17.在实数范围内分解因式:=_________18.若x=-1,则x2+2x+1=__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)综合与实践﹣﹣旋转中的数学问题背景:在一次综合实践活动课上,同学们以两个矩形为对象,研究相似矩形旋转中的问题:已知矩形ABCD∽矩形A′B′C′D′,它们各自对角线的交点重合于点O,连接AA′,CC′.请你帮他们解决下列问题:观察发现:(1)如图1,若A′B′∥AB,则AA′与CC′的数量关系是______;操作探究:(2)将图1中的矩形ABCD保持不动,矩形A′B′C′D′绕点O逆时针旋转角度α(0°<α≤90°),如图2,在矩形A′B′C′D′旋转的过程中,(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由;操作计算:(3)如图3,在(2)的条件下,当矩形A′B′C′D′绕点O旋转至AA′⊥A′D′时,若AB=6,BC=8,A′B′=3,求AA′的长.20.(6分)先化简,再求值:,其中x是从-1、0、1、2中选取一个合适的数.21.(6分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD、小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,然后沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:,(斜坡的铅直高度与水平宽度的比),经过测量AB=10米,AE=15米,求点B到地面的距离;求这块宣传牌CD的高度.(测角器的高度忽略不计,结果保留根号)22.(8分)已知:如图,在半径是4的⊙O中,AB、CD是两条直径,M是OB的中点,CM的延长线交⊙O于点E,且EM>MC,连接DE,DE=.(1)求证:△AMC∽△EMB;(2)求EM的长;(3)求sin∠EOB的值.23.(8分)关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根.(1)求m的取值范围;(2)若x1,x2是一元二次方程x2+2x+2m=0的两个根,且x12+x22﹣x1x2=8,求m的值.24.(10分)已知点E是矩形ABCD的边CD上一点,BF⊥AE于点F,求证△ABF∽△EAD.25.(10分)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.若将这种水果每斤的售价降低x元,则每天的销售量是斤(用含x的代数式表示);销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?26.(12分)如图1所示是一辆直臂高空升降车正在进行外墙装饰作业.图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为2m.当起重臂AC长度为8m,张角∠HAC为118°时,求操作平台C离地面的高度.(果保留小数点后一位,参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)27.(12分)某商城销售A,B两种自行车型自行车售价为2

100元辆,B型自行车售价为1

750元辆,每辆A型自行车的进价比每辆B型自行车的进价多400元,商城用80

000元购进A型自行车的数量与用64

000元购进B型自行车的数量相等.求每辆A,B两种自行车的进价分别是多少?现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13

000元,求获利最大的方案以及最大利润.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】

先利用三角函数计算出∠OAB=60°,再根据旋转的性质得∠CAB=30°,根据切线的性质得OC⊥AC,从而得到∠OAC=30°,然后根据含30度的直角三角形三边的关系可得到OC的长.【详解】解:在Rt△ABO中,sin∠OAB===,∴∠OAB=60°,∵直线l1绕点A逆时针旋转30°后得到的直线l1刚好与⊙O相切于点C,∴∠CAB=30°,OC⊥AC,∴∠OAC=60°﹣30°=30°,在Rt△OAC中,OC=OA=1.故选B.【点睛】本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,则直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.也考查了旋转的性质.2、A【解析】

设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.3、C【解析】

由∠BEG=45°知∠BEA>45°,结合∠AEF=90°得∠HEC<45°,据此知HC<EC,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据SAS推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH不相似,即可判断④.【详解】解:∵四边形ABCD是正方形,∴AB=BC=CD,∵AG=GE,∴BG=BE,∴∠BEG=45°,∴∠BEA>45°,∵∠AEF=90°,∴∠HEC<45°,∴HC<EC,∴CD﹣CH>BC﹣CE,即DH>BE,故①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中,∵AG=CE,∠GAE=∠CEF,AE=EF,∴△GAE≌△CEF(SAS)),∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;故选:C.【点睛】本题考查了正方形的性质,等腰三角形的性质,全等三角形的性质和判定,相似三角形的判定,勾股定理等知识点的综合运用,综合比较强,难度较大.4、B【解析】

A选项:利用同底数幂的除法法则,底数不变,只把指数相减即可;

B选项:利用平方差公式,应先把2a看成一个整体,应等于(2a)2-b2而不是2a2-b2,故本选项错误;

C选项:先把(-a)2化为a2,然后利用同底数幂的乘法法则,底数不变,只把指数相加,即可得到;

D选项:两项不是同类项,故不能进行合并.【详解】A选项:a6÷a2=a4,故本选项错误;

B选项:(2a+b)(2a-b)=4a2-b2,故本选项正确;

C选项:(-a)2•a3=a5,故本选项错误;

D选项:5a与2b不是同类项,不能合并,故本选项错误;

故选:B.【点睛】考查学生同底数幂的乘除法法则的运用以及对平方差公式的掌握,同时要求学生对同类项进行正确的判断.5、C【解析】

①由抛物线的顶点横坐标可得出b=-2a,进而可得出4a+2b=0,结论①错误;

②利用一次函数图象上点的坐标特征结合b=-2a可得出a=-,再结合抛物线与y轴交点的位置即可得出-1≤a≤-,结论②正确;

③由抛物线的顶点坐标及a<0,可得出n=a+b+c,且n≥ax2+bx+c,进而可得出对于任意实数m,a+b≥am2+bm总成立,结论③正确;

④由抛物线的顶点坐标可得出抛物线y=ax2+bx+c与直线y=n只有一个交点,将直线下移可得出抛物线y=ax2+bx+c与直线y=n-1有两个交点,进而可得出关于x的方程ax2+bx+c=n-1有两个不相等的实数根,结合④正确.【详解】:①∵抛物线y=ax2+bx+c的顶点坐标为(1,n),

∴-=1,

∴b=-2a,

∴4a+2b=0,结论①错误;

②∵抛物线y=ax2+bx+c与x轴交于点A(-1,0),

∴a-b+c=3a+c=0,

∴a=-.

又∵抛物线y=ax2+bx+c与y轴的交点在(0,2),(0,3)之间(包含端点),

∴2≤c≤3,

∴-1≤a≤-,结论②正确;

③∵a<0,顶点坐标为(1,n),

∴n=a+b+c,且n≥ax2+bx+c,

∴对于任意实数m,a+b≥am2+bm总成立,结论③正确;

④∵抛物线y=ax2+bx+c的顶点坐标为(1,n),

∴抛物线y=ax2+bx+c与直线y=n只有一个交点,

又∵a<0,

∴抛物线开口向下,

∴抛物线y=ax2+bx+c与直线y=n-1有两个交点,

∴关于x的方程ax2+bx+c=n-1有两个不相等的实数根,结合④正确.

故选C.【点睛】本题考查了二次函数图象与系数的关系、抛物线与x轴的交点以及二次函数的性质,观察函数图象,逐一分析四个结论的正误是解题的关键.6、C【解析】分析:先求出A点坐标,再根据图形平移的性质得出A1点的坐标,故可得出反比例函数的解析式,把O1点的横坐标代入即可得出结论.详解:∵OB=1,AB⊥OB,点A在函数(x<0)的图象上,∴当x=−1时,y=2,∴A(−1,2).∵此矩形向右平移3个单位长度到的位置,∴B1(2,0),∴A1(2,2).∵点A1在函数(x>0)的图象上,∴k=4,∴反比例函数的解析式为,O1(3,0),∵C1O1⊥x轴,∴当x=3时,∴P故选C.点睛:考查反比例函数图象上点的坐标特征,坐标与图形变化-平移,解题的关键是运用双曲线方程求出点A的坐标,利用平移的性质求出点A1的坐标.7、C【解析】

根据题意得k-1≠0且△=2²-4(k-1)×(-2)>0,解得:k>且k≠1.故选C【点睛】本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac,关键是熟练掌握:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8、C【解析】

根据按一定规律排列的一列数依次为:,1,,,,…,可知符号规律为奇数项为负,偶数项为正;分母为3、7、9、……,型;分子为型,可得第100个数为.【详解】按一定规律排列的一列数依次为:,1,,,,…,按此规律,奇数项为负,偶数项为正,分母为3、7、9、……,型;分子为型,可得第n个数为,∴当时,这个数为,故选:C.【点睛】本题属于规律题,准确找出题目的规律并将特殊规律转化为一般规律是解决本题的关键.9、D【解析】圆锥的侧面积=×80π×90=3600π(cm2).故选D.10、A【解析】

由题意根据勾股定理求出OA,进而根据正弦的定义进行分析解答即可.【详解】解:由题意得,,,由勾股定理得,,.故选:A.【点睛】本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.11、B【解析】

根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得.【详解】根据三角形中线的定义知:线段AD是△ABC的中线.故选B.【点睛】本题考查了三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线.12、A【解析】∵数据组2、x、8、1、1、2的众数是2,∴x=2,∴这组数据按从小到大排列为:2、2、2、1、1、8,∴这组数据的中位数是:(2+1)÷2=3.1.故选A.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、﹣1.【解析】试题解析:分式的值为0,则:解得:故答案为14、1≤a≤1【解析】

根据y的取值范围可以求得相应的x的取值范围.【详解】解:∵二次函数y=x1﹣4x+4=(x﹣1)1,∴该函数的顶点坐标为(1,0),对称轴为:x=﹣,把y=0代入解析式可得:x=1,把y=1代入解析式可得:x1=3,x1=1,所以函数值y的取值范围为0≤y≤1时,自变量x的范围为1≤x≤3,故可得:1≤a≤1,故答案为:1≤a≤1.【点睛】此题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.15、.【解析】

首先根据题意得出m的值,进而求出t=﹣的值即可求得答案.【详解】∵竖直上抛的小球离地面的高度h(米)与时间t(秒)的函数关系式为h=﹣2t2+mt+,小球经过秒落地,∴t=时,h=0,则0=﹣2×()2+m+,解得:m=,当t=﹣=﹣时,h最大,故答案为:.【点睛】本题考查了二次函数的应用,正确得出m的值是解题关键.16、【解析】考点:弧长的计算;正多边形和圆.分析:本题主要考查求正多边形的每一个内角,以及弧长计算公式.解:方法一:先求出正六边形的每一个内角==120°,所得到的三条弧的长度之和=3×=2πcm;方法二:先求出正六边形的每一个外角为60°,得正六边形的每一个内角120°,每条弧的度数为120°,三条弧可拼成一整圆,其三条弧的长度之和为2πcm.17、2(x+)(x-).【解析】

先提取公因式2后,再把剩下的式子写成x2-()2,符合平方差公式的特点,可以继续分解.【详解】2x2-6=2(x2-3)=2(x+)(x-).

故答案为2(x+)(x-).【点睛】本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.18、2【解析】

先利用完全平方公式对所求式子进行变形,然后代入x的值进行计算即可.【详解】∵x=-1,∴x2+2x+1=(x+1)2=(-1+1)2=2,故答案为:2.【点睛】本题考查了代数式求值,涉及了因式分解,二次根式的性质等,熟练掌握相关知识是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)AA′=CC′;(2)成立,证明见解析;(3)AA′=【解析】

(1)连接AC、A′C′,根据题意得到点A、A′、C′、C在同一条直线上,根据矩形的性质得到OA=OC,OA′=OC′,得到答案;(2)连接AC、A′C′,证明△A′OA≌△C′OC,根据全等三角形的性质证明;(3)连接AC,过C作CE⊥AB′,交AB′的延长线于E,根据相似多边形的性质求出B′C′,根据勾股定理计算即可.【详解】(1)AA′=CC′,理由如下:连接AC、A′C′,∵矩形ABCD∽矩形A′B′C′D′,∠CAB=∠C′A′B′,∵A′B′∥AB,∴点A、A′、C′、C在同一条直线上,由矩形的性质可知,OA=OC,OA′=OC′,∴AA′=CC′,故答案为AA′=CC′;(2)(1)中的结论还成立,AA′=CC′,理由如下:连接AC、A′C′,则AC、A′C′都经过点O,由旋转的性质可知,∠A′OA=∠C′OC,∵四边形ABCD和四边形A′B′C′D′都是矩形,∴OA=OC,OA′=OC′,在△A′OA和△C′OC中,,∴△A′OA≌△C′OC,∴AA′=CC′;(3)连接AC,过C作CE⊥AB′,交AB′的延长线于E,∵矩形ABCD∽矩形A′B′C′D′,∴,即,解得,B′C′=4,∵∠EB′C=∠B′C′C=∠E=90°,∴四边形B′ECC′为矩形,∴EC=B′C′=4,在Rt△ABC中,AC==10,在Rt△AEC中,AE==2,∴AA′+B′E=2﹣3,又AA′=CC′=B′E,∴AA′=.【点睛】本题考查的是矩形的性质、旋转变换的性质、全等三角形的判定和性质,掌握旋转变换的性质、矩形的性质是解题的关键.20、.【解析】

先把分子分母因式分解,约分后进行通分化为同分母,再进行同分母的加法运算,然后再约分得到原式=,由于x不能取±1,2,所以把x=0代入计算即可.【详解】,====,当x=0时,原式=.21、(1)2;(2)宣传牌CD高(20﹣1)m.【解析】试题分析:(1)在Rt△ABH中,由tan∠BAH==i==.得到∠BAH=30°,于是得到结果BH=ABsin∠BAH=1sin30°=1×=2;(2)在Rt△ABH中,AH=AB.cos∠BAH=1.cos30°=2.在Rt△ADE中,tan∠DAE=,即tan60°=,得到DE=12,如图,过点B作BF⊥CE,垂足为F,求出BF=AH+AE=2+12,于是得到DF=DE﹣EF=DE﹣BH=12﹣2.在Rt△BCF中,∠C=90°﹣∠CBF=90°﹣42°=42°,求得∠C=∠CBF=42°,得出CF=BF=2+12,即可求得结果.试题解析:解:(1)在Rt△ABH中,∵tan∠BAH==i==,∴∠BAH=30°,∴BH=ABsin∠BAH=1sin30°=1×=2.答:点B距水平面AE的高度BH是2米;(2)在Rt△ABH中,AH=AB.cos∠BAH=1.cos30°=2.在Rt△ADE中,tan∠DAE=,即tan60°=,∴DE=12,如图,过点B作BF⊥CE,垂足为F,∴BF=AH+AE=2+12,DF=DE﹣EF=DE﹣BH=12﹣2.在Rt△BCF中,∠C=90°﹣∠CBF=90°﹣42°=42°,∴∠C=∠CBF=42°,∴CF=BF=2+12,∴CD=CF﹣DF=2+12﹣(12﹣2)=20﹣1(米).答:广告牌CD的高度约为(20﹣1)米.22、(1)证明见解析;(2)EM=4;(3)sin∠EOB=.【解析】

(1)连接A、C,E、B点,那么只需要求出△AMC和△EMB相似,即可求出结论,根据圆周角定理可推出它们的对应角相等,即可得△AMC∽△EMB;

(2)根据圆周角定理,结合勾股定理,可以推出EC的长度,根据已知条件推出AM、BM的长度,然后结合(1)的结论,很容易就可求出EM的长度;

(3)过点E作EF⊥AB,垂足为点F,通过作辅助线,解直角三角形,结合已知条件和(1)(2)所求的值,可推出Rt△EOF各边的长度,根据锐角三角函数的定义,便可求得sin∠EOB的值.【详解】(1)证明:连接AC、EB,如图1,∵∠A=∠BEC,∠B=∠ACM,∴△AMC∽△EMB;(2)解:∵DC是⊙O的直径,∴∠DEC=90°,∴DE2+EC2=DC2,∵DE=,CD=8,且EC为正数,∴EC=7,∵M为OB的中点,∴BM=2,AM=6,∵AM•BM=EM•CM=EM(EC﹣EM)=EM(7﹣EM)=12,且EM>MC,∴EM=4;(3)解:过点E作EF⊥AB,垂足为点F,如图2,∵OE=4,EM=4,∴OE=EM,∴OF=FM=1,∴EF=,∴sin∠EOB=.【点睛】本题考查了圆心角、弧、弦、弦心距的关系与相似三角形的判定与性质,解题的关键是熟练的掌握圆心角、弧、弦、弦心距的关系与相似三角形的判定与性质.23、(1);(2)m=﹣.【解析】

(1)根据已知和根的判别式得出△=22﹣4×1×2m=4﹣8m>0,求出不等式的解集即可;(2)根据根与系数的关系得出x1+x2=﹣2,x1•x2=2m,把x1+xx12+x22﹣x1x2=8变形为(x1+x2)2﹣3x1x2=8,代入求出即可.【详解】(1)∵关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根,∴△=22﹣4×1×2m=4﹣8m>0,解得:即m的取值范围是(2)∵x1,x2是一元二次方程x2+2x+2m=0的两个根,∴x1+x2=﹣2,x1•x2=2m,∵x12+x22﹣x1x2=8,∴(x1+x2)2﹣3x1x2=8,∴(﹣2)2﹣3×2m=8,解得:【点睛】本题考查了根的判别式和根与系数的关系,能熟记根的判别式的内容和根与系数的关系的内容是解此题的关键.24、证明见解析【解析】试题分析:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论