版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届陕西省华阴市九上数学期末复习检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面.则这个圆锥的底面圆的半径为()A. B.1 C. D.22.我市组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是()A. B. C. D.3.如图,已知双曲线上有一点,过作垂直轴于点,连接,则的面积为()A. B. C. D.4.如图,一个正六边形转盘被分成6个全等三角形,任意转动这个转盘1次,当转盘停止时,指针指向阴影区域的概率是()A. B. C. D.5.在下面的计算程序中,若输入的值为1,则输出结果为().A.2 B.6 C.42 D.126.若x=2是关于x的一元二次方程x2﹣2a=0的一个根,则a的值为()A.3 B.2 C.4 D.57.从一定高度抛一个瓶盖100次,落地后盖面朝下的有55次,则下列说法中错误的是A.盖面朝下的频数是55B.盖面朝下的频率是0.55C.盖面朝下的概率不一定是0.55D.同样的试验做200次,落地后盖面朝下的有110次8.二次函数图象上部分点的坐标对应值列表如下:x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…则该函数图象的对称轴是()A.直线x=﹣3 B.直线x=﹣2 C.直线x=﹣1 D.直线x=09.如图,△ABC在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC的面积为10,且sinA=,那么点C的位置可以在()A.点C1处 B.点C2处 C.点C3处 D.点C4处10.如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()①AE=BF;②AE⊥BF;③sin∠BQP=;④S四边形ECFG=2S△BGE.A.4 B.3 C.2 D.111.下列命题是真命题的是()A.如果a+b=0,那么a=b=0 B.的平方根是±4C.有公共顶点的两个角是对顶角 D.等腰三角形两底角相等12.如图,直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,且∠EDC=30°,弦EF∥AB,则EF的长度为()A.2 B.2 C. D.2二、填空题(每题4分,共24分)13.分解因式:x3﹣4x2﹣12x=_____.14.一个不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇均后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中80次摸到黑球,估计盒子大约有白球____________个.15.如图,正方形ABCO与正方形ADEF的顶点B、E在反比例函数的图象上,点A、C、D在坐标轴上,则点E的坐标是_____.16.某县为做大旅游产业,在2018年投入资金3.2亿元,预计2020年投入资金6亿元,设旅游产业投资的年平均增长率为,则可列方程为____.17.如图,直线x=2与反比例函数和的图象分别交于A、B两点,若点P是y轴上任意一点,则△PAB的面积是_____.18.如图三角形ABC是圆O的内接正三角形,弦EF经过BC边的中点D,且EF平行AB,若AB等于6,则EF等于________.三、解答题(共78分)19.(8分)已知:内接于⊙,连接并延长交于点,交⊙于点,满足.(1)如图1,求证:;(2)如图2,连接,点为弧上一点,连接,=,过点作,垂足为点,求证:;(3)如图3,在(2)的条件下,点为上一点,分别连接,,过点作,交⊙于点,,,连接,求的长.20.(8分)如图,在四边形中,,.已知A(-2,0)、B(6,0)、D(0,3)反比例函数的图象经过点.(1)求点的坐标和反比例函数的解析式;(2)将四边形沿轴向上平移个单位长度得到四边形,问点是否落在(1)中的反比例函数的图象上?21.(8分)电影《我和我的祖国》在国庆档热播,预售票房成功破两亿,堪称热度最高的爱国电影,周老师打算从非常渴望观影的5名学生会干部(两男三女)中,抽取两人分别赠送一张的嘉宾观影卷,问抽到一男一女的概率是多少?(请你用树状图或者列表法分析)22.(10分)解方程:3(x﹣4)2=﹣2(x﹣4)23.(10分)如图,是⊙的弦,交于点,过点的直线交的延长线于点,且是⊙的切线.(1)判断的形状,并说明理由;(2)若,求的长;(3)设的面积是的面积是,且.若⊙的半径为,求.24.(10分)请完成下面的几何探究过程:(1)观察填空如图1,在Rt△ABC中,∠C=90°,AC=BC=4,点D为斜边AB上一动点(不与点A,B重合),把线段CD绕点C顺时针旋转90°得到线段CE,连DE,BE,则①∠CBE的度数为____________;②当BE=____________时,四边形CDBE为正方形.(2)探究证明如图2,在Rt△ABC中,∠C=90°,BC=2AC=4,点D为斜边AB上一动点(不与点A,B重合),把线段CD绕点C顺时针旋转90°后并延长为原来的两倍得到线段CE,连DE,BE则:①在点D的运动过程中,请判断∠CBE与∠A的大小关系,并证明;②当CD⊥AB时,求证:四边形CDBE为矩形(3)拓展延伸如图2,在点D的运动过程中,若△BCD恰好为等腰三角形,请直接写出此时AD的长.25.(12分)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).(1)请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.26.2019年11月5日,第二届中国国际进口博览会(The2ndChinaInternationallmportExpo)在上海国家会展中心开幕.本次进博会将共建开放合作、创新共享的世界经济,见证海纳百川的中国胸襟,诠释兼济天下的责任担当.小滕、小刘两人想到四个国家馆参观:.中国馆;.俄罗斯馆;.法国馆;.沙特阿拉伯馆.他们各自在这四个国家馆中任意选择一个参观,每个国家馆被选择的可能性相同.(1)求小滕选择.中国馆的概率;(2)用画树状图或列表的方法,求小滕和小刘恰好选择同一国家馆的概率.
参考答案一、选择题(每题4分,共48分)1、A【分析】根据扇形的弧长公式求出弧长,根据圆锥的底面周长等于它的侧面展开图的弧长求出半径.【详解】解:设圆锥底面的半径为r,
扇形的弧长为:,∵圆锥的底面周长等于它的侧面展开图的弧长,
∴根据题意得2πr=,解得:r=,故选A.【点睛】本题考查了圆锥的计算,掌握弧长公式、周长公式和圆锥与扇形的对应关系是解题的关键.2、A【分析】画树状图(用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆)展示所有9种等可能的结果数,找出两人恰好选择同一场馆的结果数,然后根据概率公式求解.【详解】解:画树状图为:(用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆)
共有9种等可能的结果数,其中两人恰好选择同一场馆的结果数为3,
所以两人恰好选择同一场馆的概率,故选:A.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.3、B【分析】根据已知双曲线上有一点,点纵和横坐标的积是4,的面积是它的二分之一,即为所求.【详解】解:∵双曲线上有一点,设A的坐标为(a,b),∴b=∴ab=4∴的面积==2故选:B.【点睛】本题考查了反比例函数的性质和三角形的面积,熟练掌握相关知识是解题的关键.4、C【解析】试题分析:转动转盘被均匀分成6部分,阴影部分占2份,转盘停止转动时指针指向阴影部分的概率是=;故选C.考点:几何概率.5、C【分析】根据程序框图,计算,直至计算结果大于等于10即可.【详解】当时,,继续运行程序,当时,,继续运行程序,当时,,输出结果为42,故选C.【点睛】本题考查利用程序框图计算代数式的值,按照程序运算的规则进行计算是解题的关键.6、A【分析】把x=2代入已知方程,列出关于a的新方程,通过解新方程可以求得a的值.【详解】∵x=2是关于x的一元二次方程x2﹣2a=0的一个根,∴22×﹣2a=0,解得a=1.即a的值是1.故选:A.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.7、D【分析】根据频数,频率及用频率估计概率即可得到答案.【详解】A、盖面朝下的频数是55,此项正确;B、盖面朝下的频率是=0.55,此项正确;C、盖面朝下的概率接近于0.55,但不一定是0.55,此项正确;D、同样的试验做200次,落地后盖面朝下的在110次附近,不一定必须有110次,此项错误;故选:D.【点睛】本题考查了频数,频率及用频率估计概率,掌握知识点是解题关键.8、B【分析】根据二次函数的对称性确定出二次函数的对称轴,然后解答即可.【详解】解:∵x=﹣3和﹣1时的函数值都是﹣3相等,∴二次函数的对称轴为直线x=﹣1.故选B.【点睛】本题考查二次函数的图象.9、D【解析】如图:∵AB=5,,∴D=4,∵,∴,∴AC=4,∵在RT△AD中,D,AD=8,∴A=,故答案为D.10、B【解析】解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,∵AB=BC,∠ABE=∠BCF,BE=CF,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正确;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正确;根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°.∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,令PF=k(k>0),则PB=2k在Rt△BPQ中,设QB=x,∴x2=(x﹣k)2+4k2,∴x=,∴sin=∠BQP==,故③正确;∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE=BC,BF=BC,∴BE:BF=1:,∴△BGE的面积:△BCF的面积=1:5,∴S四边形ECFG=4S△BGE,故④错误.故选B.点睛:本题主要考查了四边形的综合题,涉及正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质以及折叠的性质的知识点,解决的关键是明确三角形翻转后边的大小不变,找准对应边,角的关系求解.11、D【详解】解:A、如果a+b=0,那么a=b=0,或a=﹣b,错误,为假命题;B、=4的平方根是±2,错误,为假命题;C、有公共顶点且相等的两个角是对顶角,错误,为假命题;D、等腰三角形两底角相等,正确,为真命题;故选D.12、B【解析】本题考查的圆与直线的位置关系中的相切.连接OC,EC所以∠EOC=2∠D=60°,所以△ECO为等边三角形.又因为弦EF∥AB所以OC垂直EF故∠OEF=30°所以EF=OE=2.二、填空题(每题4分,共24分)13、x(x+2)(x-6).【分析】因式分解的步骤:先提公因式,再利用其它方法分解,注意分解要彻底.首先提取公因式x,然后利用十字相乘法求解,【详解】解:x3﹣4x2﹣12x=x(x2﹣4x﹣12)=x(x+2)(x﹣6).【点睛】本题考查因式分解-十字相乘法;因式分解-提公因式法,掌握因式分解的技巧正确计算是本题的解题关键.14、【分析】可根据“黑球数量÷黑白球总数=黑球所占比例”来列等量关系式,其中“黑白球总数=黑球个数+白球个数“,“黑球所占比例=随机摸到的黑球次数÷总共摸球的次数”.【详解】设盒子里有白球x个,根据=得:,解得:x=32.经检验得x=32是方程的解,故答案为32.【点睛】此题考查利用频率估计概率,解题关键在于掌握运算公式.15、【分析】设点E的坐标为,根据正方形的性质得出点B的坐标,再将点E、B的坐标代入反比例函数解析式求解即可.【详解】设点E的坐标为,且由图可知则点B的坐标为将点E、B的坐标代入反比例函数解析式得:整理得:解得:或(不符合,舍去)故点E的坐标为.【点睛】本题考查了反比例函数的定义与性质,利用正方形的性质求出点B的坐标是解题关键.16、【分析】根据题意,找出题目中的等量关系,列出一元二次方程即可.【详解】解:根据题意,设旅游产业投资的年平均增长率为,则;故答案为:.【点睛】本题考查了一元二次方程的应用——增长率问题,解题的关键是熟练掌握增长率问题的等量关系,正确列出一元二次方程.17、.【详解】解:∵把x=1分别代入、,得y=1、y=,∴A(1,1),B(1,).∴.∵P为y轴上的任意一点,∴点P到直线BC的距离为1.∴△PAB的面积.故答案为:.18、【分析】设AC与EF交于点G,由于EF∥AB,且D是BC中点,易得DG是△ABC的中位线,即DG=3;易知△CDG是等腰三角形,可过C作AB的垂线,交EF于M,交AB于N;然后证DE=FG,根据相交弦定理得BD•DC=DE•DF,而BD、DC的长易知,DF=3+DE,由此可得到关于DE的方程,即可求得DE的长,EF=DF+DE=3+2DE,即可求得EF的长;【详解】解:如图,过C作CN⊥AB于N,交EF于M,则CM⊥EF,根据圆和等边三角形的性质知:CN必过点O,∵EF∥AB,D是BC的中点,∴DG是△ABC的中位线,即DG=AB=3;∵∠ACB=60°,BD=DC=BC,AG=GC=AC,且BC=AC,∴△CGD是等边三角形,∵CM⊥DG,∴DM=MG;∵OM⊥EF,由垂径定理得:EM=MF,故DE=GF,∵弦BC、EF相交于点D,∴BD×DC=DE×DF,即DE×(DE+3)=3×3;解得DE=或(舍去);∴EF=3+2×=;【点睛】本题主要考查了相交弦定理,等边三角形的性质,三角形中位线定理,垂径定理,掌握相交弦定理,等边三角形的性质,三角形中位线定理,垂径定理是解题的关键.三、解答题(共78分)19、(1)证明见解析;(2)证明见解析;(3).【分析】(1)如图1中,连接AD.设∠BEC=3α,∠ACD=α,再根据圆周角定理以及三角形内角和与外角的性质证明∠ACB=∠ABC即可解决问题;
(2)如图2中,连接AD,在CD上取一点Z,使得CZ=BD.证明△ADB≌△AZC(SAS),推出AD=AZ即可解决问题;
(3)连接AD,PA,作OK⊥AC于K,OR⊥PC于R,CT⊥FP交FP的延长线于T.假设OH=a,PC=2a,求出sin∠OHK=,从而得出∠OHK=45°,再根据角度的转化得出∠DAG=∠ACO=∠OAK,从而有tan∠ACD=tan∠DAG=tan∠OAK=,进而可求出DG,AG的长,再通过勾股定理以及解直角三角形函数可求出FT,PT的长即可解决问题.【详解】(1)证明:如图1中,连接AD.设∠BEC=3α,∠ACD=α.
∵∠BEC=∠BAC+∠ACD,∴∠BAC=2α,
∵CD是直径,∴∠DAC=90°,
∴∠D=90°-α,∴∠B=∠D=90°-α,
∵∠ACB=180°-∠BAC-∠ABC=180°-2α-(90°-α)=90°-α.
∴∠ABC=∠ACB,
∴AB=AC.(2)证明:如图2中,连接AD,在CD上取一点Z,使得CZ=BD.
∵=,∴DB=CF,
∵∠DBA=∠DCA,CZ=BD,AB=AC,
∴△ADB≌△AZC(SAS),∴AD=AZ,
∵AG⊥DZ,∴DG=GZ,
∴CG=CZ+GZ=BD+DG=CF+DG.(3)解:连接AD,PA,作OK⊥AC于K,OR⊥PC于R,CT⊥FP交FP的延长线于T.
∵CP⊥AC,∴∠ACP=90°,∴PA是直径,
∵OR⊥PC,OK⊥AC,∴PR=RC,∠ORC=∠OKC=∠ACP=90°,
∴四边形OKCR是矩形,∴RC=OK,
∵OH:PC=1:,∴可以假设OH=a,PC=2a,∴PR=RC=a,
∴RC=OK=a,sin∠OHK=,∴∠OHK=45°.
∵OH⊥DH,∴∠DHO=90°,∴∠DHA=180°-90°-45°=45°,
∵CD是直径,∴∠DAC=90°,∴∠ADH=90°-45°=45°,
∴∠DHA=∠ADH,∴AD=AH,
∵∠COP=∠AOD,∴AD=PC,
∴AH=AD=PC=2a,
∴AK=AH+HK=2a+a=3a,
在Rt△AOK中,tan∠OAK=,OA=,∴sin∠OAK=,∵∠ADG+∠DAG=90°,∠ACD+∠ADG=90°,∴∠DAG=∠ACD,
∵AO=CO,∴∠OAK=∠ACO,
∴∠DAG=∠ACO=∠OAK,
∴tan∠ACD=tan∠DAG=tan∠OAK=,
∴AG=3DG,CG=3AG,
∴CG=9DG,
由(2)可知,CG=DG+CF,
∴DG+12=9DG,∴DG=,AG=3DG=3×=,
∴AD=,∴PC=AD=.∵sin∠F=sin∠OAK,∴sin∠F=,∴CT=,FT=,PT=,∴PF=FT-PT=.【点睛】本题属于圆综合题,考查了圆周角定理,垂径定理,全等三角形的判定和性质,解直角三角形,矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.20、(1);(1)点恰好落在双曲线上【分析】(1)过C作CE⊥AB,由题意得到四边形ABCD为等腰梯形,进而得到三角形AOD与三角形BEC全等,得到CE=OD=3,OA=BE=1,可求出OE的长,确定出C坐标,代入反比例解析式求出k的值即可;(1)由平移规律确定出B′的坐标,代入反比例解析式检验即可.【详解】解:(1)过C作CE⊥AB.∵DC∥AB,AD=BC,∴四边形ABCD为等腰梯形,∴∠A=∠B,DO=CE=3,CD=OE,∴△ADO≌△BCE,∴BE=OA=1.∵B(6,0)∴OB=6∴OE=OB﹣BE=6﹣1=4,∴C(4,3),把C(4,3)代入反比例函数解析式得:k=11,则反比例解析式为y;(1)由平移得:平移后B的坐标为(6,1),把x=6代入反比例得:y=1,则平移后点落在该双曲线上.【点睛】本题考查了待定系数法求反比例解析式,反比例函数图象上点的坐标特征,以及坐标与图形变化,熟练掌握待定系数法是解答本题的关键.21、【分析】列举出所有等情况和抽到一男一女的情况数,再根据概率公式即可得出答案.【详解】设三个女生记为,,,两个男生记为,.列表如下:有且只有以上20种情形,它们发生的机会均等,抽到一男一女有12种情形,∴(一男一女)=【点睛】本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22、x1=4,x2=.【解析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】3(x﹣4)2=﹣2(x﹣4),3(x﹣4)2+2(x﹣4)=0,(x﹣4)[3(x﹣4)+2]=0,x﹣4=0,3(x﹣4)+2=0,x1=4,x2=.【点睛】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键,注意:解一元二次方程的方法有因式分解法、公式法、配方法、直接开平方法.23、(1)是等腰三角形,理由见解析;(2)的长为;(3).【解析】(1)首先连接OB,根据等腰三角形的性质由OA=OB得,由点C在过点B的切线上,且,根据等角的余角相等,易证得∠PBC=∠CPB,即可证得△CBP是等腰三角形;(2)设BC=x,则PC=x,在Rt△OBC中,根据勾股定理得到,然后解方程即可;(3)作CD⊥BP于D,由等腰三角形三线合一的性质得,由,通过证得,得出即可求得CD,然后解直角三角形即可求得.【详解】(1)是等腰三角形,理由:连接,⊙与相切与点,,即,,是等腰三角形(2)设,则,在中,,,,,解得,即的长为;(3)解:作于,,,,,,,,,.【点睛】本题考查了切线的性质、勾股定理、等腰三角形的判定与性质以及三角形相似的判定和性质.此题难度适中,注意掌握辅助线的作法及数形结合思想的应用.24、(1)①45°,②;(2)①,理由见解析,②见解析;(3)或【分析】(1)①由等腰直角三角形的性质得出,由旋转的性质得:,,证明,即可得出结果;②由①得,求出,作于,则是等腰直角三角形,证出是等腰直角三角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 员工入职、离职管理制度和相关流程
- 蛋糕店劳动合同范文
- 土方回填碾压试验方案计划
- 护理人员岗位职责制度
- 2025届高考生物二轮复习书写遗传图解(含解析)
- 创建绿色学校规划及实施方案范文
- 非计划再次手术管理制度及流程
- 第一学期小学一年级班主任工作计划
- 新三板投资者关系管理法律合同
- 农业行业精准农业与智能灌溉系统方案
- DB34∕T 2290-2022 水利工程质量检测规程
- 电子政务概论-形考任务5(在线测试权重20%)-国开-参考资料
- 工业自动化设备维护与升级手册
- 8《网络新世界》(第一课时)教学设计-2024-2025学年道德与法治四年级上册统编版
- 辽宁省水资源管理集团有限责任公司招聘笔试真题2022
- 2024内蒙古文物考古研究所招聘历年高频500题难、易错点模拟试题附带答案详解
- 眼科延续护理
- 初中语文++第21课《小圣施威降大圣》课件+统编版语文七年级上册
- 服装修改行业市场需求变化带来新的商业机遇分析报告
- 幼儿园小班语言《点点点》课件
- 0-3岁婴幼儿营养与健康智慧树知到期末考试答案章节答案2024年杭州师范大学
评论
0/150
提交评论