版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省无锡市华士片2025届九上数学期末复习检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.已知△ABC与△DEF相似且对应周长的比为4:9,则△ABC与△DEF的面积比为A.2:3 B.16:81C.9:4 D.4:92.如图,PA、PB、CD分别切⊙O于点A、B、E,CD分别交PA、PB于点C、D.下列关系:①PA=PB;②∠ACO=∠DCO;③∠BOE和∠BDE互补;④△PCD的周长是线段PB长度的2倍.则其中说法正确的有()A.1个 B.2个 C.3个 D.4个3.如图,正方形ABCD中,BE=FC,CF=2FD,AE、BF交于点G,连接AF,给出下列结论:①AE⊥BF;②AE=BF;③BG=GE;④S四边形CEGF=S△ABG,其中正确的个数为()A.1个 B.2个 C.3个 D.4个4.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A.1 B.2 C.3 D.45.如图,正方形ABCD的顶点C、D在x轴上,A、B恰好在二次函数y=2x2﹣4的图象上,则图中阴影部分的面积之和为()A.6 B.8 C.10 D.126.已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是()A.20cm2 B.20πcm2 C.10πcm2 D.5πcm27.在矩形中,的角平分线与交于点,的角平分线与交于点,若,,则的长为()A. B. C. D.8.抛物线y=(x﹣1)2+3的顶点坐标是()A.(1,3) B.(﹣1,3) C.(1,﹣3) D.(3,﹣1)9.小轩从如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,观察得出了下面五条信息:①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤.你认为其中正确信息的个数有A.2个 B.3个 C.4个 D.5个10.已知(x1,y1),(x2,y2),(x3,y3)是反比例函数y=的图象上的三个点,且x1<x2<0,x3>0,则y1,y2,y3的大小关系是()A.y3<y1<y2 B.y2<y1<y3 C.y1<y2<y3 D.y3<y2<y1二、填空题(每小题3分,共24分)11.如图,有一张直径为1.2米的圆桌,其高度为0.8米,同时有一盏灯距地面2米,圆桌在水平地面上的影子是,∥,和是光线,建立如图所示的平面直角坐标系,其中点的坐标是.那么点的坐标是_________.12.某厂一月份的总产量为500吨,通过技术更新,产量逐月提高,三月份的总产量达到720吨.若平均每月增长率是,则可列方程为__.13.在一个不透明的盒子中装有除了颜色以外没有任何其他区别的1个黑球和2个红球,从盒子中任意取出1个球,取出红球的概率是____.14.已知二次函数的顶点为,且经过,将该抛物线沿轴向右平移,当它再次经过点时,所得抛物线的表达式为______.15.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是_____.16.一元二次方程x2﹣2x=0的解是.17.如图,△ABC中,∠C=90°,,D为AC上一点,∠BDC=45°,CD=6,则AB=_______.18.圆锥的底面半径是4cm,母线长是6cm,则圆锥的侧面积是______cm2(结果保留π).三、解答题(共66分)19.(10分)有一块矩形木板,木工采用如图的方式,在木板上截出两个面积分别为18dm2和32dm2的正方形木板.(1)求剩余木料的面积.(2)如果木工想从剩余的木料中截出长为1.5dm,宽为ldm的长方形木条,最多能截出块这样的木条.20.(6分)感知定义在一次数学活动课中,老师给出这样一个新定义:如果三角形的两个内角α与β满足α+2β=90°,那么我们称这样的三角形为“类直角三角形”.尝试运用(1)如图1,在Rt△ABC中,∠C=90°,BC=3,AB=5,BD是∠ABC的平分线.①证明△ABD是“类直角三角形”;②试问在边AC上是否存在点E(异于点D),使得△ABE也是“类直角三角形”?若存在,请求出CE的长;若不存在,请说明理由.类比拓展(2)如图2,△ABD内接于⊙O,直径AB=10,弦AD=6,点E是弧AD上一动点(包括端点A,D),延长BE至点C,连结AC,且∠CAD=∠AOD,当△ABC是“类直角三角形”时,求AC的长.21.(6分)己知抛物线与轴交于两点,与轴交于点,顶点为.(1)求抛物线的表达式及点D的坐标;(2)判断的形状.22.(8分)如图,在平面直角坐标系中,为坐标原点,的边垂直于轴,垂足为点,反比例函数的图象经过的中点,且与相交于点.(1)求反比例函数的解析式;(2)求的值.23.(8分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(3)△A2B2C2的面积是平方单位.24.(8分)运城菖蒲酒产于山西垣曲.莒蒲洒远在汉代就已名噪酒坛,为历代帝王将相所喜爱,并被列为历代御膳香醪.菖蒲酒在市场的销售量会根据价格的变化而变化.菖蒲酒每瓶的成本价是元,某超市将售价定为元时,每天可以销售瓶,若售价每降低元,每天即可多销售瓶(售价不能高于元),若设每瓶降价元用含的代数式表示菖蒲酒每天的销售量.每瓶菖蒲酒的售价定为多少元时每天获取的利润最大?最大利润是多少?25.(10分)小王准备给小李打电话,由于保管不善,电话本上的小李手机号中,有两个数字已经模糊不清,如果用,表示这两个看不清的数字,那么小李的号码为(手机号码由11个数字组成),小王记得这11个数字之和是20的整数倍.(1)求的值;(2)求出小王一次拨对小李手机号的概率.26.(10分)按要求解答下列各小题.(1)解方程:;(2)计算:.
参考答案一、选择题(每小题3分,共30分)1、B【解析】直接根据相似三角形周长的比等于相似比,面积比等于相似比的平方解答.【详解】解:∵△ABC与△DEF相似且对应周长的比为4:9,∴△ABC与△DEF的相似比为4:9,∴△ABC与△DEF的面积比为16:81.故选B【点睛】本题考查的是相似三角形的性质,即相似三角形周长的比等于相似比,面积的比等于相似比的平方.2、D【详解】根据切线长定理可知PA=PB,故①正确;同理可知CA=CE,可知CO为∠ACE的角平分线,所以∠ACO=∠DCO,故②正确;同理可知DE=BD,由切线的性质可知∠OBD=∠OED=90°,可根据四边形的内角和为360°知∠BOE+∠BDE=180°,即∠BOE和∠BDE互补,故③正确;根据切线长定理可得CE=CA,BD=DE,而△PCD的周长=PC+CD+PD=PC+CE+DE+PD=PC+AC+PD+DB=PA+PB=2PB,故④正确.故选D.3、C【分析】根据正方形的性质证明△ABE≌△BCF,可证得①AE⊥BF;
②AE=BF正确;证明△BGE∽△ABE,可得==,故③不正确;由S△ABE=S△BFC可得S四边形CEGF=S△ABG,故④正确.【详解】解:在正方形ABCD中,AB=BC,∠ABE=∠C=90,
又∵BE=CF,
∴△ABE≌△BCF(SAS),
∴AE=BF,∠BAE=∠CBF,
∴∠FBC+∠BEG=∠BAE+∠BEG=90°,
∴∠BGE=90°,
∴AE⊥BF,故①,②正确;
∵CF=2FD,BE=CF,AB=CD,
∴=,
∵∠EBG+∠ABG=∠ABG+∠BAG=90°,
∴∠EBG=∠BAE,
∵∠EGB=∠ABE=90°,
∴△BGE∽△ABE,
∴==,即BG=GE,故③不正确,
∵△ABE≌△BCF,
∴S△ABE=S△BFC,
∴S△ABE−S△BEG=S△BFC−S△BEG,
∴S四边形CEGF=S△ABG,故④正确.
故选:C.【点睛】本题主要考查了正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质等知识点,解决问题的关键是熟练掌握正方形的性质.4、B【解析】分析:直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选B.点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.5、B【分析】根据抛物线和正方形的对称性求出OD=OC,并判断出S阴影=S矩形BCOE,设点B的坐标为(n,2n)(n>0),把点B的坐标代入抛物线解析式求出n的值得到点B的坐标,然后求解即可.【详解】解:∵四边形ABCD为正方形,抛物线y=2x2﹣4和正方形都是轴对称图形,且y轴为它们的公共对称轴,∴OD=OC=,S阴影=S矩形BCOE,设点B的坐标为(n,2n)(n>0),∵点B在二次函数y=2x2﹣4的图象上,∴2n=2n2﹣4,解得,n1=2,n2=﹣1(舍负),∴点B的坐标为(2,4),∴S阴影=S矩形BCOE=2×4=1.故选:B.【点睛】此题考查的是抛物线和正方形的对称性的应用、求二次函数上点的坐标和矩形的面积,掌握抛物线和正方形的对称性、求二次函数上点的坐标和矩形的面积公式是解决此题的关键.6、C【解析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入,圆锥的侧面积=2π×2×5÷2=10π.故答案为C7、D【分析】先延长EF和BC,交于点G,再根据条件可以判断三角形ABE为等腰直角三角形,并求得其斜边BE的长,然后根据条件判断三角形BEG为等腰三角形,最后根据△EFD∽△GFC得出CG与DE的倍数关系,并根据BG=BC+CG进行计算即可.【详解】延长EF和BC,交于点G,∵3DF=4FC,∴,∵矩形ABCD中,∠ABC的角平分线BE与AD交于点E,∴∠ABE=∠AEB=45°,∴AB=AE=7,∴直角三角形ABE中,BE=,又∵∠BED的角平分线EF与DC交于点F,∴∠BEG=∠DEF,∵AD∥BC,∴∠G=∠DEF,∴∠BEG=∠G,∴BG=BE=,∵∠G=∠DEF,∠EFD=∠GFC,∴△EFD∽△GFC,∴,设CG=3x,DE=4x,则AD=7+4x=BC,∵BG=BC+CG,∴7+4x+3x=7,解得x=−1,∴BC=7+4x=7+4−4=3+4,故选:D.【点睛】本题主要考查了矩形、相似三角形以及等腰三角形,解决问题的关键是掌握矩形的性质:矩形的四个角都是直角,矩形的对边相等.解题时注意:有两个角对应相等的两个三角形相似.8、A【分析】根据顶点式解析式写出顶点坐标即可.【详解】解:抛物线y=(x﹣1)2+3的顶点坐标是(1,3).故选:A.【点晴】本题考查了二次函数的性质,主要是利用顶点式解析式写顶点的方法,需熟记.9、D【解析】试题分析:①如图,∵抛物线开口方向向下,∴a<1.∵对称轴x,∴<1.∴ab>1.故①正确.②如图,当x=1时,y<1,即a+b+c<1.故②正确.③如图,当x=﹣1时,y=a﹣b+c>1,∴2a﹣2b+2c>1,即3b﹣2b+2c>1.∴b+2c>1.故③正确.④如图,当x=﹣1时,y>1,即a﹣b+c>1,∵抛物线与y轴交于正半轴,∴c>1.∵b<1,∴c﹣b>1.∴(a﹣b+c)+(c﹣b)+2c>1,即a﹣2b+4c>1.故④正确.⑤如图,对称轴,则.故⑤正确.综上所述,正确的结论是①②③④⑤,共5个.故选D.10、A【解析】试题分析:∵反比例函数中,k=-4<0,∴此函数的图象在二、四象限,在每一象限内y随x的增大而增大.∵x1<x2<0<x3,∴0<y1<y2,y3<0,∴y3<y1<y2故选A.考点:反比例函数图象上点的坐标特征.二、填空题(每小题3分,共24分)11、【分析】先证明△ABC∽△ADE,再根据相似三角形的性质:相似三角形的对应高的比等于相似比求解即可.【详解】解:∵BC∥DE,∴△ABC∽△ADE,∴,∵BC=1.2,∴DE=2,∴E(4,0).故答案为:(4,0).【点睛】本题考查了中心投影,相似三角形的判定和性质,准确识图,熟练掌握相似三角形的对应高的比等于相似比是解题的关键.12、【分析】根据增长率的定义列方程即可,二月份的产量为:,三月份的产量为:.【详解】二月份的产量为:,三月份的产量为:.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟练理解增长率的表示方法,一般用增长后的量=增长前的量×(1+增长率).13、【分析】根据概率的定义即可解题.【详解】解:一共有3个球,其中有2个红球,∴红球的概率=.【点睛】本题考查了概率的实际应用,属于简单题,熟悉概念是解题关键.14、或【分析】由二次函数解析式的顶点式写出二次函数坐标为,将点P坐标代入二次函数解析式,求出a的值,如图,抛物线向右平移再次经过点P,即点P的对称点点Q与点P重合,向右移动了4个单位,写出抛物线解析式即可.【详解】由顶点坐标(0,0)可设二次函数解析式为,将P(2,2)代入解析式可得a=,所以,如图,图像上,点P的对称点为点Q(-2,2),当点Q与点P重合时,向右移动了4个单位,所以抛物线解析式为或.故答案为或.【点睛】本题主要考查二次函数顶点式求解析式、二次函数的图像和性质以及二次函数的平移,本题关键在于根据题意确定出向右平移的单位.15、【分析】列表得出所有等可能结果,从中找到两个球颜色相同的结果数,利用概率公式计算可得.【详解】解:列表如下:黄红红红(黄,红)(红,红)(红,红)红(黄,红)(红,红)(红,红)白(黄,白)(红,白)(红,白)由表知,共有9种等可能结果,其中摸出的两个球颜色相同的有4种结果,所以摸出的两个球颜色相同的概率为,故答案为.【点睛】本题考查了列表法与树状图的知识,解题的关键是能够用列表或列树状图将所有等可能的结果列举出来,难度不大.16、【分析】方程整理后,利用因式分解法求出解即可.【详解】方程整理得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x1=1.故答案为x1=0,x1=1.17、1【分析】根据题意由已知得△BDC为等腰直角三角形,所以CD=BC=6,又因为已知∠A的正弦值,即可求出AB的长.【详解】解:∵∠C=90°,∠BDC=45°,∴BC=CD=6,又∵sinA==,∴AB=6÷=1.故答案为:1.【点睛】本题考查解直角三角形问题,直角三角形知识的牢固掌握和三角函数的灵活运用.18、24π【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm,
∴圆锥的底面圆的周长=2π•4=8π,
∴圆锥的侧面积=×8π×6=24π(cm2).
故答案为:24π.【点睛】本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=•l•R,(l为弧长).三、解答题(共66分)19、(1)剩余木料的面积为6dm1;(1)1.【分析】(1)先确定两个正方形的边长,然后结合图形解答即可;(1)估算和的大小,结合题意解答即可.【详解】解:(1)∵两个正方形的面积分别为18dm1和31dm1,∴这两个正方形的边长分别为3dm和4dm,∴剩余木料的面积为(4﹣3)×3=6(dm1);(1)4<3<4.5,1<<1,∴从剩余的木料中截出长为1.5dm,宽为ldm的长方形木条,最多能截出1块这样的木条,故答案为:1.【点睛】本题考查的是二次根式的应用,掌握无理数的估算方法是解答本题的关键.20、(1)①证明见解析;②CE=;(2)当△ABC是“类直角三角形”时,AC的长为或.【分析】(1)①证明∠A+2∠ABD=90°即可解决问题.②如图1中,假设在AC边设上存在点E(异于点D),使得△ABE是“类直角三角形”,证明△ABC∽△BEC,可得,由此构建方程即可解决问题.(2)分两种情形:①如图2中,当∠ABC+2∠C=90°时,作点D关于直线AB的对称点F,连接FA,FB.则点F在⊙O上,且∠DBF=∠DOA.②如图3中,由①可知,点C,A,F共线,当点E与D共线时,由对称性可知,BA平分∠FBC,可证∠C+2∠ABC=90°,利用相似三角形的性质构建方程即可解决问题.【详解】(1)①证明:如图1中,∵BD是∠ABC的角平分线,∴∠ABC=2∠ABD,∵∠C=90°,∴∠A+∠ABC=90°,∴∠A+2∠ABD=90°,∴△ABD为“类直角三角形”;②如图1中,假设在AC边设上存在点E(异于点D),使得△ABE是“类直角三角形”,在Rt△ABC中,∵AB=5,BC=3,∴AC=,∵∠AEB=∠C+∠EBC>90°,∴∠ABE+2∠A=90°,∵∠ABE+∠A+∠CBE=90°,∴∠A=∠CBE,∴△ABC∽△BEC,∴,∴CE=,(2)∵AB是直径,∴∠ADB=90°,∵AD=6,AB=10,∴BD=,①如图2中,当∠ABC+2∠C=90°时,作点D关于直线AB的对称点F,连接FA,FB,则点F在⊙O上,且∠DBF=∠DOA,∵∠DBF+∠DAF=180°,且∠CAD=∠AOD,∴∠CAD+∠DAF=180°,∴C,A,F共线,∵∠C+∠ABC+∠ABF=90°,∴∠C=∠ABF,∴△FAB∽△FBC,∴,即,∴AC=.②如图3中,由①可知,点C,A,F共线,当点E与D共线时,由对称性可知,BA平分∠FBC,∴∠C+2∠ABC=90°,∵∠CAD=∠CBF,∠C=∠C,∴△DAC∽△FBC,∴,即,∴CD=(AC+6),在Rt△ADC中,[(ac+6)]2+62=AC2,∴AC=或﹣6(舍弃),综上所述,当△ABC是“类直角三角形”时,AC的长为或.【点睛】本题主要考查圆综合题,考查了相似三角形的判定和性质,“类直角三角形”的定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.21、(1)顶点;(2)是直角三角形.【分析】(1)根据点A和点B的坐标设函数解析式为两点式,再将点C的坐标代入求出a的值,最后再将两点式化为一般式即可得出答案;(2)根据BCD三点的坐标分别求出BC、CD和BD边的长度即可得出答案.【详解】解:(1)设,将代入解析式得:顶点(2)是直角三角形.【点睛】本题考查的是二次函数,难度适中,解题关键是根据题目意思灵活设出二次函数的解析式.22、(1);(2).【分析】(1)设点D的坐标为(4,m)(m>0),则点A的坐标为(4,3+m),由C为OA的中点可表示出点C的坐标,根据C、D点在反比例函数图象上可得出关于k、m的二元一次方程租,解方程组即可得出结论;
(2)由m的值,可找出点A的坐标,由此即可得出线段OB、AB的长度,从而得出△OAB为等腰直角三角形,最后得出结果.【详解】解:(1)设点的坐标为,则点的坐标为.点为线段的中点,点的坐标为.点均在反比例函数的图象上,,解得,反比例函数的解析式为;(2),点的坐标为,,∴△OAB是等腰直角三角形,.【点睛】本题考查了反比例函数与一次函数的交点问题、反
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年人教版(2024)必修1生物下册月考试卷含答案
- 2025年度文化创意园区场地承包协议3篇
- 2025年度钢材企业社会责任合同3篇
- 2024石场生产线承包合同
- 专项财务分析及建议服务协议示例版
- 二零二五年护工培训及考核服务协议3篇
- 2024年门面店铺租赁协议范本
- 2025年度设备借用与能源消耗降低合同范本3篇
- 2025年度钢管租赁合同指南3篇
- 医学伦理与道德问题
- 2025年急诊科护理工作计划
- 高中家长会 高二寒假线上家长会课件
- 2024-2025学年山东省聊城市高一上学期期末数学教学质量检测试题(附解析)
- 违规行为与处罚管理制度
- 2025年正规的离婚协议书
- 个人教师述职报告锦集10篇
- 四川省等八省2025年普通高中学业水平选择性考试适应性演练历史试题(含答案)
- 2025中国地震应急搜救中心公开招聘应届毕业生5人高频重点提升(共500题)附带答案详解
- 医疗健康大模型白皮书(1.0版) 202412
- 部编版八年级初二语文上册第六单元《写作表达要得体》说课稿
- 《内部培训师培训》课件
评论
0/150
提交评论