![专题35两个计数原理排列组合(理科)(学生版)_第1页](http://file4.renrendoc.com/view5/M01/1A/2E/wKhkGGZ6HLCALyoIAAKBU6RZKVY466.jpg)
![专题35两个计数原理排列组合(理科)(学生版)_第2页](http://file4.renrendoc.com/view5/M01/1A/2E/wKhkGGZ6HLCALyoIAAKBU6RZKVY4662.jpg)
![专题35两个计数原理排列组合(理科)(学生版)_第3页](http://file4.renrendoc.com/view5/M01/1A/2E/wKhkGGZ6HLCALyoIAAKBU6RZKVY4663.jpg)
![专题35两个计数原理排列组合(理科)(学生版)_第4页](http://file4.renrendoc.com/view5/M01/1A/2E/wKhkGGZ6HLCALyoIAAKBU6RZKVY4664.jpg)
![专题35两个计数原理排列组合(理科)(学生版)_第5页](http://file4.renrendoc.com/view5/M01/1A/2E/wKhkGGZ6HLCALyoIAAKBU6RZKVY4665.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题35两个计数原理、排列组合(理科)(核心考点精讲精练)1.近几年真题考点分布概率与统计近几年考情考题示例考点分析关联考点2022年全国乙(文科),第4题,5分茎叶图计算平均数、中位数、概率2022年全国乙(文科),第14题,5分计数原理、排列、组合与概率2022年全国乙(理科),第10题,5分互斥事件、独立事件求概率2022年全国乙(理科),第13题,5分计数原理、排列、组合与概率2022年全国乙(理科),第19题,12分2022年全国乙(文科),第19题,12分(1)求平均数;(2)求相关系数(3)估算样本量2022年全国甲(文科),第17题,12分(1)求概率;(2)独立性检验2022年全国甲(文科),第6题,5分古典概型2022年全国甲(理科),第19题,12分(1)求概率;(2)离散型随机变量的分布列与数学期望2022年全国甲(理科),第15题,5分古典概型立体几何2022年全国甲(理科),第2题,5分2022年全国甲(文科),第2题,5分众数、平均数、中位数比较,求极差、方差、标准差2023年全国乙(文科),第9题,5分计数原理、排列、组合与概率2023年全国乙(理科),第5题,5分2023年全国乙(文科),第7题,5分几何概型圆环面积2023年全国乙(理科),第9题,5分计数原理与排列、组合2023年全国乙(理科),第17题,12分2023年全国乙(文科),第17题,12分(1)求样本平均数,方差;(2)统计新定义2023年全国甲(文科),第4题,5分计数原理、排列、组合与概率2023年全国甲(理科),第6题,5分条件概率2023年全国甲(理科),第9题,5分计数原理与排列、组合2023年全国甲(理科),第19题,12分(1)离散型随机变量的分布列与数学期望;(2)独立性检验2023年全国甲(文科),第20题,12分(1)求样本平均数;(2)独立性检验2.命题规律及备考策略【命题规律】1.分类计数原理:完成一件事情有几类不同的方式,每类方式有不同的方法,则完成这件事的方法数就是把每类方式中的方法数相加;2.分步计数原理:完成一件事情分为几个步骤,每个步骤有若干种方法,则完成这件事的方法数就是把每一步的方法数相乘;【备考策略】1.理解分类加法计数原理和分步乘法计数原理;2.会用分类加法计数原理和分步乘法计数原理分析和解决一些简单的实际问题;3.理解排列、组合的概念,能利用计数原理推导排列数公式、组合数公式;4.能解决简单的实际问题.【命题预测】1.结合实际应用:未来的命题可能会更加注重于理论在实际生活中的应用;2.原理深化:对于加法原理和乘法原理,可能会进一步探究其背后的数学原理,这可能会涉及到更深层次的数学概念,如集合、函数等;3.排列组合与其他数学内容的交叉:排列组合作为计数原理的一个重要部分,可能会与概率论、数论等其他数学内容形成交叉;4.计算机科学中的应用:计算机科学中有很多问题可以转化为计数问题;知识讲解一、分类加法计数原理完成一件事有两类不同的方案,在第1类方案中有种不同的方法,在第2类方案中有种不同的方法,那么完成这件事共有N=m+n种不同的方法.
(1)每类方法都能独立完成这件事,它是独立的、一次的,且每次得到的都是最后结果,只需一种方法就可完成这件事;(2)各类方法之间是互斥的、并列的、独立的.二、分步乘法计数原理完成一件事需要两个步骤,做第1步有种不同的方法,做第2步有种不同的方法,那么完成这件事共有N=m×n种不同的方法.
(1)每一步得到的只是中间结果,任何一步都不能独立完成这件事,只是各个步骤都完成了才能完成这件事;(2)各步之间是相互依存的,并且既不能重复也不能遗漏,但有时可以调换各步的顺序.三、两个计数原理的区别与联系分类加法计数原理分步乘法计数原理相同点用来计算完成一件事的方法种数不同点分类、相加分步、相乘每类方案中的每一种方法都能独立完成这件事每步依次完成才算完成这件事情(每步中的每一种方法不能独立完成这件事)注意点类类独立,不重不漏步步相依,缺一不可分类标准是运用分类加法计数原理的难点所在,应抓住题目中的关键词、关键元素和关键位置.1.利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.2.分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.与数字相关的计数原理的应用问题,需要遵循“特殊元素、特殊位置优先安排”的原则,涉及组数问题中有重复数字问题,可以考虑用除法或分类进行求解.利用两个计数原理解决几何问题的两个基本步骤:1.要弄清楚几何图形的性质;2.合理分类将问题简化.1.解决涂色问题,可以按照颜色的种数分类,也可以按照不同的区域分步完成.2.涂色、种植问题的解题关注点和关键(1)关注点:首先分清元素的数目,其次分清在不相邻的区域内是否可以使用同类元素.(2)关键:对每个区域逐一进行检验,选择下手点,分步处理.四、排列与组合的概念名称定义排列从个不同元素中取出个元素并按照一定的顺序排成一列,叫作从个元素中取出个元素的一个排列
组合作为一组,叫作从个不同元素中取出个元素的一个组合五、排列数与组合数1.从个不同元素中取出个元素的所有不同排列的个数,叫作从个不同元素中取出个元素的排列数,用符号表示.
2.从个不同元素中取出个元素的所有不同组合的个数,叫作从个不同元素中取出个元素的组合数,用符号表示.
六、排列数、组合数的公式及性质公式(1)n(n1)(n2)…(nm+1)=n!((2)n(=
n!m!(n-m)!(,,且性质(1)0!=1,Ann=n!(2)Cnm=Cnn-m,C1.正确理解组合数的性质(1):从个不同元素中取出个元素的方法数等于取出剩余个元素的方法数.(2):从个不同元素中取出个元素可分以下两种情况:①不含特殊元素有种方法;②含特殊元素A有种方法.2.正确辨析“排列”与“组合”排列与组合最根本的区别在于“有序”和“无序”.取出元素后交换顺序,若与顺序有关,则是排列;若与顺序无关,则是组合.3.记牢两个常用公式(1).(2).求解排列应用问题的6种主要方法直接法把符合条件的排列数直接列式计算优先法优先安排特殊元素或特殊位置捆绑法把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列插空法对不相邻问题,先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中定序问题除法处理对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列间接法正难则反、等价转化的方法两类有附加条件的组合问题的解法(1)“含有”或“不含有”某些元素的组合题型:若“含有”,则先将这些元素取出,再由另外元素补足;若“不含有”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“最多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“最多”这两个关键词的含义,谨防重复与漏解.用直接法或间接法都可以求解,通常用直接法求解,分类复杂时,可用间接法求解.(1)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.(2)对于相间问题,先考虑不受限制的元素,然后将不相邻的元素插入到这些排好的元素之间及两端的空隙中.“特殊”优先原则一般从以下三种思路考虑:(1)以元素为主考虑,即先安排特殊元素,再安排其他元素;(2)以位置为主考虑,即先安排特殊位置,再安排其他位置;(3)用间接法解题,先不考虑限制条件,计算出排列总数,再减去不符合要求的排列数.1.对不同元素分组、分配问题的求解策略(1)对于整体均分,解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以Ann(n为均分的组数),避免重复计数.(2)对于部分均分,即不平均分组中的部分平均分组问题,解题时注意重复的次数是均匀分组的组数的阶乘数,即若有m组元素个数相等,则分组时应除以m!,分组过程中有几个这样的均匀分组,就要除以几个这样的全排列数,这类问题也有无序和有序两种情形;(3)对于不等分组,只需先分组,后排列,注意分组时任何组中元素的个数都不相等,所以不需要除以全排列数,这类问题也有不平均分组无序和不平均分组有序两种情形.2.对于相同元素的“分配”问题,常用方法是“隔板法”.考点一、分类加法计数原理1.(2020年全国统一高考数学试卷(文科)(新课标Ⅱ))如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤i<j<k≤12.若k–j=3且j–i=4,则称ai,aj,ak为原位大三和弦;若k–j=4且j–i=3,则称ai,aj,ak为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为(
)A.5 B.8 C.10 D.152.(2023届广东省模拟数学试题)“回文”是古今中外都有的一种修辞手法,如“我为人人,人人为我”等,数学上具有这样特征的一类数称为“回文数”、“回文数”是指从左到右与从右到左读都一样的正整数,如121,241142等,在所有五位正整数中,有且仅有两位数字是奇数的“回文数”共有(
)A.100个 B.125个 C.225个 D.250个3.为有效防范新冠病毒蔓延,国内将有新型冠状肺炎确诊病例地区及其周边划分为封控区、管控区、防范区.为支持某地新冠肺炎病毒查控,某院派出医护人员共5人,分别派往三个区,每区至少一人,甲、乙主动申请前往封控区或管控区,且甲、乙恰好分在同一个区,则不同的安排方法有(
)A.12种 B.18种 C.24种 D.30种4.给图中A,B,C,D,E,F六个区域进行染色,每个区域只染一种颜色,且相邻的区域不同色.若有4种颜色可供选择,则共有(
)种不同的染色方案.A.96 B.144 C.240 D.3601.第24届冬季奥运会将于2022年2月4日至2022年2月20日在北京市和河北省张家口市举行.现要安排甲、乙、丙、丁四名志愿者去国家高山滑雪馆、国家速滑馆、首钢滑雪大跳台三个场馆参加活动,要求每个场馆都有人去,且这四人都在这三个场馆,则甲和乙都没被安排去首钢滑雪大跳台的种数为(
)A.12 B.14 C.16 D.182.(2023年河南省模拟卷(中)理科数学(一)试题)有2男2女共4名大学毕业生被分配到三个工厂实习,每人必须去一个工厂且每个工厂至少去1人,且工厂只接收女生,则不同的分配方法种数为(
)A.12 B.14 C.36 D.723.志愿团安排去甲、乙、丙、丁四个精准扶贫点慰问的先后顺序,一位志愿者说:不能先去甲,甲的困难户最多;另一位志愿者说:不能最后去丁,丁离得最远.他们共有多少种不同的安排方法(
)A.14 B.12 C.24 D.284.(2023届山西省模拟数学试题)春节期间,某地政府在该地的一个广场布置了一个如图所示的圆形花坛,花坛分为5个区域.现有5种不同的花卉可供选择,要求相邻区域不能布置相同的花卉,且每个区域只布置一种花卉,则不同的布置方案有(
)A.120种 B.240种 C.420种 D.720种考点二、分步乘法计数原理1.某校有5名大学生打算前往观看冰球,速滑,花滑三场比赛,每场比赛至少有1名学生且至多2名学生前往,则甲同学不去观看冰球比赛的方案种数有(
)A.48 B.54 C.60 D.722.(2023届湖南省模拟数学试题)如图,用4种不同的颜色,对四边形中的四个区域进行着色,要求有公共边的两个区域不能用同一种颜色,则不同的着色方法有(
)A.72 B.56 C.48 D.363.(2023年高考全国乙卷数学(理)真题)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有(
)A.30种 B.60种 C.120种 D.240种1.(2023届重庆模拟数学试题)2022年8月某市组织应急处置山火救援行动,现从组织好的5支志愿团队中任选1支救援物资接收点服务,另外4支志愿团队分配给“传送物资、砍隔离带、收捡垃圾”三个不同项目,每支志愿团队只能分配到1个项目,且每个项目至少分配1个志愿团队,则不同的分配方案种数为(
)A.36 B.81 C.120 D.1802.(2023年湖南省调研考试数学试题)甲、乙、丙等七人相约到电影院看电影《长津湖》,恰好买到了七张连号的电影票,若甲、乙两人必须相邻,且丙坐在七人的正中间,则不同的坐法的种数为(
)A.240 B.192 C.96 D.483.(2023年山东省联考数学试题)如图,现要对某公园的4个区域进行绿化,有4种不同颜色的花卉可供选择,要求有公共边的两个区域不能用同一种颜色的花卉,则不同的绿化方案有(
)A.48种 B.72种 C.64种 D.256种4.(2023届河北省一模数学试题)将英文单词“”中的6个字母重新排列,其中字母b不相邻的排列方法共有(
)A.120种 B.240种 C.480种 D.960种考点三、两个原理的综合应用1.学校要安排2名班主任,3名科任老师共五人在本校以及另外两所学校去监考,要求在本校监考的老师必须是班主任,且每个学校都有人去,则有(
)种不同的分配方案.A.18 B.20 C.28 D.342.(2023届云南省模拟数学试题)如图所示某城区的一个街心花园,共有五个区域,中心区域E已被设计为代表城市特点的一个标志性塑像,要求在周围ABCD四个区域中种植鲜花,现有四个品种的鲜花可供选择,要求每个区域只种一个品种且相邻区域所种品种不同,则不同的种植方法的种数为(
)A.12 B.24 C.48 D.843.从1,2,3,4,5这五个数字中任取3个组成无重复数字的三位数,当三个数字中有2和3时,2需排在3的前面(不一定相邻),这样的三位数有(
)A.51个 B.54个 C.12个 D.45个1.有3个完全相同的标号为1的小球和两个标号为2,3的小球,将这5个小球放入3个不同的盒子中,每个盒子至少放一个小球,则不同的放法总数为(
)A.45 B.90 C.24 D.1502.将六个数、、、、、将任意次序排成一行,拼成一个位数,则产生的不同的位数的个数是(
)A. B.C. D.3.如图,“赵爽弦图”是我国古代数学的瑰宝,它是由四个全等的直角三角形和一个正方形构成.现从给出的5种不同的颜色中最多可以选择4种不同的颜色给这5个区域涂色;要求相邻的区域不能涂同一种颜色,每个区域只涂一种颜色.则不同的涂色方案有(
)种A.120 B.240 C.300 D.3604.将6盆不同的花卉摆放成一排,其中A、B两盆花卉均摆放在C花卉的同一侧,则不同的摆放种数为(
)A.360 B.480 C.600 D.720考点四、排列问题1.(2023届广东省模拟数学试题)如图,在两行三列的网格中放入标有数字的六张卡片,每格只放一张卡片,则“只有中间一列两个数字之和为5”的不同的排法有(
)A.96种 B.64种 C.32种 D.16种2.(2023届云南省教学质量监测(五)数学试题)某社区活动需要连续六天有志愿者参加服务,每天只需要一名志愿者,现有甲、乙、丙、丁、戊、己6名志愿者,计划依次安排到该社区参加服务,要求甲不安排第一天,乙和丙在相邻两天参加服务,则不同的安排方案共有(
)A.72种 B.81种 C.144种 D.192种3.某高中从3名男教师和2名女教师中选出3名教师,派到3个不同的乡村支教,要求这3名教师中男女都有,则不同的选派方案共有(
)种A.9 B.36 C.54 D.1081.(2023年陕西省模拟理科数学试题)某中学于2023年4月25日召开春季运动会,在开幕式之前,由高一,高二学生自发准备了7个娱乐节目,其中有2个歌曲节目,3个乐器独奏,2个舞蹈节目,要求舞蹈节目一定排在首尾,另外2个歌曲节目不相邻.则这7个节目出场的不同编排种数为(
)A.288 B.72 C.144 D.482.(2003年普通高等学校春季招生考试数学(文)试题(北京卷))某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为(
)A.6 B.12 C.15 D.303.将7个人从左到右排成一排,若甲、乙、丙3人中至多有2人相邻,且甲不站在最右端,则不同的站法有(
).A.1860种 B.3696种 C.3600种 D.3648种4.公元五世纪,数学家祖冲之估计圆周率的范围是:,为纪念祖冲之在圆周率方面的成就,把称为“祖率”,这是中国数学的伟大成就.某教师为帮助同学们了解“祖率”,让同学们把小数点后的7位数字1,4,1,5,9,2,6进行随机排列,整数部分3不变,那么可以得到大于的不同数字的个数为(
)A.720 B.1440 C.2280 D.4080考点五、组合问题1.(2023年云南省质量监测数学试题)如图,小华从图中处出发,先到达处,再前往处,则小华从处到处可以选择的最短路径有(
)A.25条 B.48条 C.150条 D.512条2.(2023年高考全国甲卷数学(文)真题)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为(
)A. B. C. D.3.现有甲、乙、丙、丁、戊五位同学,分别带着A、B、C、D、E五个不同的礼物参加“抽盲盒”学游戏,先将五个礼物分别放入五个相同的盒子里,每位同学再分别随机抽取一个盒子,恰有一位同学拿到自己礼物的概率为(
)A. B. C. D.4.(2020年新高考全国卷Ⅱ数学考试题(海南卷))要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有(
)A.2种 B.3种 C.6种 D.8种5.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A. B. C. D.6.(1)4个不同的小球放入编号为1,2,3,4的盒子,共有多少种放法;(2)4个不同的小球放入编号为1,2,3,4的盒子,恰有一个盒子空,共有多少种放法;(3)10个相同的小球放入编号为1,2,3,4的盒子,每个盒子不空,共有多少种放法;(4)4个相同的小球放入编号为1,2,3,4的盒子,恰有两个盒子空,共有多少种放法?1.(2023年吉林省模拟数学试题)将9个相同的小球放入3个不同的盒子中共有多少种方法(每个盒子中至少放入一个小球)()A.28 B.56 C.36 D.842.某兴趣小组有5名学生,其中有3名男生和2名女生,现在要从这5名学生中任选2名学生参加活动,则选中的2名学生的性别相同的概率是A. B. C. D.3.(2023届广东省调研数学试题)安排5名大学生到三家企业实习,每名大学生只去一家企业,每家企业至少安排1名大学生,则大学生甲、乙到同一家企业实习的概率为(
)A. B. C. D.4.有4名大学生志愿者参加2022年北京冬奥会志愿服务.冬奥会志愿者指挥部随机派这4名志愿者参加冰壶、短道速滑、花样滑冰3个项目比赛的志愿服务,则每个项目至少安排一名志愿者进行志愿服务的概率(
)A. B. C. D.5.(2023届广东省模拟数学试题)衣柜里有灰色,白色,黑色,蓝色四双不同颜色的袜子,从中随机选4只,已知取出两只是同一双,则取出另外两只不是同一双的概率为(
)A. B. C. D.6.某传统文化学习小组有10名同学,其中男生5名,女生5名,现要从中选取4人参加学校举行的汇报展示活动.(1)如果4人中男生、女生各2人,有多少种选法?(2)如果男生甲与女生乙至少有1人参加,有多少种选法?(3)如果4人中既有男生又有女生,有多少种选法?考点六、排列组合的综合应用1.“碳中和”是指企业、团体或个人等测算在一定时间内直接或间接产生的温室气体排放总量,通过植树造林、节能减排等形式,以抵消自身产生的二氧化碳排放量,实现二氧化碳“零排放”.某“碳中和”研究中心计划派5名专家分别到A,B,C三地指导“碳中和”工作,每位专家只去一个地方,且每地至少派驻1名专家,则分派方法的种数为(
)A.90 B.150 C.180 D.3002.(2003年普通高等学校招生考试数学试题(广东卷))如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有种.(以数字作答)3.(2023届河南省模拟理科数学试题)某数学兴趣小组的5名学生负责讲述“宋元数学四大家”——秦九韶、李冶、杨辉和朱世杰的故事,每名学生只讲一个数学家的故事,每个数学家的故事都有学生讲述,则不同的分配方案有种.4.如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供4种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻颜色不同,则不同的涂色方法种数为.1.中国空间站的主体结构包括天和核心舱、问天实验舱和梦天实验舱.假设中国空间站要安排甲,乙,丙,丁,戊5名航天员开展实验,其中天和核心舱安排3人,问天实验舱与梦天实验舱各安排1人.若甲、乙两人不能同时在一个舱内做实验,则不同的安排方案共有(
)A.8种 B.14种 C.20种 D.116种2.(2023年甘肃省模拟数学(理)试题)如图,节日花坛中有5个区域,现有4种不同颜色的花卉可供选择,要求相同颜色的花不能相邻栽种,则符合条件的种植方案有种.3.将5名北京冬奥会志愿者分配到花样滑冰、短道速滑和冰壶3个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有种.4.如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一种颜色,共有5种颜色可供选择,则不同的着色方法共有种(以数字作答).【基础过关】2023年10月04日计数原理一、单选题1.为有效阻断新冠肺炎疫情传播徐径,构筑好免疫屏障,从2022年1月13日开始,某市启动新冠病毒疫苗加强针接种工作,凡符合接种第三针条件的市民,要求尽快接种.该市有3个疫苗接种定点医院,现有8名志愿者将被派往这3个医院协助新冠疫苗接种工作,每个医院至少2名至多4名志愿者,则不同的安排方法共有(
)A.2940种 B.3000种 C.3600种 D.5880种2.(2022届高三普通高等学校招生全国统一考试数学试题)由于新冠肺炎疫情,现有五名社区工作人员被分配到三个小区做社区监管工作,要求每人只能去一个小区,每个小区至少有一个人,则不同的分配方法有(
)A.150种 B.90种 C.60种 D.80种3.(2023届湖南省名校适应性测试数学试题)第19届亚运会将于2023年9月23日至10月8日在杭州举行,甲、乙等4名杭州亚运会志愿者到游泳、射击、体操三个场地进行志愿服务,每名志愿者只去一个场地,每个场地至少一名志愿者,若甲不去游泳场地,则不同的安排方法共有(
)A.12种 B.18种 C.24种 D.36种4.书架上层放7本不同的语文书,书架下层放5本不同的数学书,从书架上层和下层各取一本书的取法有(
)A.12种 B.35种 C.7种 D.66种5.(2023年江西省联考数学试题)小王同学家3楼与4楼之间有8个台阶,已知小王一步可走一个或两个台阶,那么他从3楼到4楼不同的走法总数为(
)A.28种 B.32种 C.34种 D.40种6.如图.5个完全相同的圆盘用长度相同的线段连接成十字形.将其中两个圆盘染上红色.三个圆盘染上蓝色.并规定:若一种染色方法经过旋转后与第二种染色方法一致.则认为这两者是同一种染色方法.则不同的染色方法共有(
)A.2种 B.3种 C.6种 D.10种7.甲、乙、丙、丁、戊、己6人站成一排拍合照,要求甲必须站在中间两个位置之一,且乙、丙2人相邻,则不同的排队方法共有(
)A.24种 B.48种 C.72种 D.96种8.(2023届山东省模拟数学试题)过去的一年,我国载人航天事业突飞猛进,其中航天员选拔是载人航天事业发展中的重要一环.已知航天员选拔时要接受特殊环境的耐受性测试,主要包括前庭功能、超重耐力、失重飞行、飞行跳伞、着陆冲击五项.若这五项测试每天进行一项,连续5天完成.且前庭功能和失重飞行须安排在相邻两天测试,超重耐力和失重飞行不能安排在相邻两天测试,则选拔测试的安排方案有(
)A.24种 B.36种 C.48种 D.60种9.(2023届福建省适应性练习卷(省质检)数学试题)中国救援力量在国际自然灾害中为拯救生命作出了重要贡献,很好地展示了国际形象,增进了国际友谊,多次为祖国赢得了荣誉.现有5支救援队前往A,B,C等3个受灾点执行救援任务,若每支救援队只能去其中的一个受灾点,且每个受灾点至少安排1支救援队,其中甲救援队只能去B,C两个数点中的一个,则不同的安排方法数是(
)A.72 B.84 C.88 D.10010.为落实立德树人的根本任务,践行五育并举,某学校开设A,B,C三门德育校本课程,现有甲、乙、丙、丁、戊五位同学参加校本课程的学习,每位同学仅报一门,每门至少有一位同学参加,则不同的报名方法有(
)A.54种 B.240种 C.150种 D.60种11.(2023届河北省考前适应性考试数学试题)现将甲乙丙丁四个人全部安排到市、市、市三个地区工作,要求每个地区都有人去,则甲乙两个人至少有一人到市工作的安排种数为(
)A.12 B.14 C.18 D.2212.有6本不同的书,按下列方式进行分配,其中分配种数正确的是(
)A.分给甲、乙、丙三人,每人各2本,有15种分法;B.分给甲、乙、丙三人中,一人4本,另两人各1本,有180种分法;C.分给甲乙每人各2本,分给丙丁每人各1本,共有90种分法;D.分给甲乙丙丁四人,有两人各2本,另两人各1本,有1080种分法;13.(2023年河南省模拟数学试题)如图是在“赵爽弦图”的基础上创作出的一个“数学风车”平面模型,图中正方形内部为“赵爽弦图”(由四个全等的直角三角形和一个小正方形组成),给、、、这个三角形和“赵爽弦图”涂色,且相邻区域(即图中有公共点的区域)不同色,已知有种不同的颜色可供选择.则不同的涂色方法种数是(
)A. B. C. D.14.(2023年四川省模拟数学(理)试题)第31届世界大学生夏季运动会,将于2023年7月28日在成都举办,是中国西部第一次举办世界性综合运动会.某高校有甲,乙,丙,丁,戊5名翻译志愿者去参加A,B,C,D,E,五个场馆的服务工作,每人服务一个场馆且每个场馆需要一人.由于特殊原因甲不去A场馆,乙不去场馆,则不同的安排方法有(
)A.120种 B.96种C.78种 D.48种15.(2023届河北省模拟数学试题)第19届亚运会将于2023年9月在杭州举行,在杭州亚运会三馆(杭州奥体中心主体育馆、游泳馆和综合训练馆)对外免费开放预约期间,甲、乙、丙、丁4人预约参观,且每人预约了1个或2个馆,则这4人中每个馆恰有2人预约的不同方案有(
)A.76种 B.82种 C.86种 D.90种16.(2024届浙江省名校适应性考试数学试题)某校银杏大道上共有20盏路灯排成一列,为了节约用电,学校打算关掉3盏路灯,头尾两盏路灯不能关闭,关掉的相邻两盏路灯之间至少有两盏亮的路灯,则不同的方案种数是(
)A.324 B.364 C.560 D.68017.2022年北京冬奥会和冬残奥会给世界人民留下了深刻的印象,其吉祥物“冰墩墩”和“雪容融的设计好评不断,这是一次中国文化与奥林匹克精神的完美结合.为了弘扬奥林匹克精神,某学校安排甲、乙等5名志愿者将吉祥物“冰墩墩”和“雪容融”安装在学校的体育广场,每人参与且只参与一个吉祥物的安装,每个吉祥物都至少由两名志愿者安装.若甲、乙必须安装不同的吉祥物,则不同的分配方案种数为(
)A.8 B.10 C.12 D.1418.当前,新冠肺炎疫情进入常态化防控新阶段,防止疫情输入的任务依然繁重,疫情防控工作形势依然严峻、复杂.某地区安排A,B,C,D,E五名同志到三个地区开展防疫宣传活动,每个地区至少安排一人,且A,B两人安排在同一个地区,C,D两人不安排在同一个地区,则不同的分配方法总数为(
)A.30种 B.36种 C.42种 D.64种19.(2023届北京市诊断性测试数学(理)试题)若5名女生和2名男生去两地参加志愿者活动,两地均要求既要有女生又要有男生,则不同的分配方案有(
)种.A.20 B.40 C.60 D.80某班上午有五节课,分别安排语文、数学、英语、物理、化学各一节课,要求语文与化学相邻,数学与物理不相邻,且数学课不排第一节,则不同排课法的种数是.21.2021年12月,南昌最美地铁4号线开通运营,甲、乙、丙、丁四位同学决定乘坐地铁去观洲、人民公园、新洪城大市场三个地方游览,每人只能去一个地方,人民公园一定要有人去,则不同游览方案的种数为.22.(2023年湖北省联考数学试题)甲、乙、丙三名志愿者需要完成A,B,C,D,E五项不同的工作,每项工作由一人完成,每人至少完成一项,且E工作只有乙能完成,则不同的安排方式有种.23.《数术记遗》是《算经十书》中的一部,相传是汉末徐岳所著.该书记述了我国古代14种算法,分别是:积算(即筹算)、太乙算、两仪算、三才算、五行算、八卦算、九宫算、运筹算、了知算、成数算、把头算、龟算、珠算和计数.某中学研究性学习小组有甲、乙、丙、丁四人,该小组拟全部收集九宫算、运筹算、了知算、成数算和把头算等5种算法的相关资料,要求每人至少收集其中一种,且每种算法只由一个人收集,但甲不收集九宫算和了知算的资料,则不同的分工收集方案共有种.24.(2023年辽宁省模拟数学试题)如图所示的五个区域中,现要求在五个区域中涂色,有四种颜色可供选择,要求每个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为(用数字作答).25.(2018年全国普通高等学校招生统一考试理科数学(新课标I卷))从位女生,位男生中选人参加科技比赛,且至少有位女生入选,则不同的选法共有种.(用数字填写答案)26.有甲、乙、丙三项任务,甲、乙各需1人承担,丙需2人承担且至少1人是男生,现有2男2女共4名学生承担这三项任务,不同的安排方法种数是.(用具体数字作答)27.有3名男生和4名女生,根据下列不同的要求,求不同的排列方法种数.(1)全体排成一行,其中甲只能在中间或者两边位置;(2)全体排成一行,其中甲不在最左边,乙不在最右边;(3)全体排成一行,其中3名男生必须排在一起;(4)全体排成一行,男、女各不相邻;(5)全体排成一行,3名男生互不相邻;(6)全体排成一行,其中甲、乙、丙三人从左至右的顺序不变;(7)排成前后二排,前排3人,后排4人;(8)全体排成一行,甲、乙两人中间必须有3人.【能力提升】1.某地区安排A,B,C,D,E,F六名党员志愿者同志到三个基层社区开展防诈骗宣传活动,每个地区至少安排一人,至多安排三人,且A,B两人安排在同一个社区,C,D两人不安排在同一个社区,则不同的分配方法总数为(
)A.72 B.84 C.90 D.962.(2023年辽宁省模拟数学试题)为了备战下一届排球世锦赛,中国国家队甲、乙、丙、丁四人练习传球,第1次由甲传给乙、丙、丁三人中的任意一人,第2次由持球者传给另外三人中的任意一人,往后依次类推,经过4次传球,球仍回到甲手,则传法总数为(
)A.30 B.24 C.21 D.123.(2023年湖南省联考数学试题)弘扬国学经典,传承中华文化,国学乃我中华民族五千年留下的智慧精髓,其中“五经”是国学经典著作,“五经”指《诗经》《尚书》《礼记》《周易》《春秋》.小明准备学习“五经”,现安排连续四天进行学习且每天学习一种,每天学习的书都不一样,其中《诗经》与《礼记》不能安排在相邻两天学习,《周易》不能安排在第一天学习,则不同安排的方式有()A.32种 B.48种C.56种 D.68种4.西安是世界四大古都之一,历史上先后有十多个王朝在西安建都.图为唐长安(西安古称)城示意图,城中南北向共有9条街道,东西向有12条街道,被称为“九衢十二条”,整齐的街道把唐长安城划分成了108坊,各坊有坊墙包围.下列说法错误的是(
)A.从延平门进城到安化门出城,最近的不同路线共有15条.B.甲乙二人从安化门、明德门、启夏门这三个城门中随机选一城门进城,若二人选择互不影响,则二人从同一城门进城的概率为.C.用四种不同的颜色给长乐、永福、大宁、兴宁四坊染色(街道忽略),要求有公共边的两个区域不能用同一种颜色,共有60种不同的染色方法.D.若将街道看成直线,则图中矩形区域中共有不同矩形150个.5.(2023届湖北省联考数学试题)甲、乙、丙、丁、戊5名志愿者参加新冠疫情防控志愿者活动,现有三个小区可供选择,每个志愿者只能选其中一个小区.则每个小区至少有一名志愿者,且甲不在小区的概率为(
)A. B. C. D.6.2021年高考结束后小明与小华两位同学计划去老年公寓参加志愿者活动.小明在如图的街道E处,小华在如图的街道F处,老年公寓位于如图的G处,则下列说法正确的个数是(
)①小华到老年公寓选择的最短路径条数为4条②小明到老年公寓选择的最短路径条数为35条③小明到老年公寓在选择的最短路径中,与到F处和小华会合一起到老年公寓的概率为④小明与小华到老年公寓在选择的最短路径中,两人并约定在老年公寓门口汇合,事件A:小明经过F事件B;从F到老年公寓两
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年产3万台新能源汽车电机及1500台风力发电机配套冲片项目可行性研究报告写作模板-申批备案
- 2025-2030全球对称桨行业调研及趋势分析报告
- 2025-2030全球高速塑料理瓶机行业调研及趋势分析报告
- 2025-2030全球磨削数控系统行业调研及趋势分析报告
- 2025年全球及中国智能体测一体机行业头部企业市场占有率及排名调研报告
- 2025-2030全球活细胞代谢分析仪行业调研及趋势分析报告
- 2025-2030全球临床试验实验室服务行业调研及趋势分析报告
- 2025年全球及中国生命科学智能制造服务行业头部企业市场占有率及排名调研报告
- 2025-2030全球无人机基础设施检查行业调研及趋势分析报告
- 代办服务合同
- 中华护理学会团体标准-气管切开非机械通气患者气道护理
- 未成年入职免责协议书
- 光伏电站巡检专项方案
- 2024年山东省东营市中考数学试题 (原卷版)
- 2024全国能源行业火力发电集控值班员理论知识技能竞赛题库(多选题)
- 公司员工外派协议书范文
- 信息科技重大版 七年级上册 互联网应用与创新 第二单元教学设计 互联网原理
- 肺栓塞的护理查房完整版
- 手术患者手术部位标识制度
- 抖音丽人行业短视频直播项目运营策划方案
- (2024年)知识产权全套课件(完整)
评论
0/150
提交评论