2025届揭阳市榕城区数学九上期末综合测试试题含解析_第1页
2025届揭阳市榕城区数学九上期末综合测试试题含解析_第2页
2025届揭阳市榕城区数学九上期末综合测试试题含解析_第3页
2025届揭阳市榕城区数学九上期末综合测试试题含解析_第4页
2025届揭阳市榕城区数学九上期末综合测试试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届揭阳市榕城区数学九上期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列事件中,属于必然事件的是()A.任意画一个正五边形,它是中心对称图形B.某课外实践活动小组有13名同学,至少有2名同学的出生月份相同C.不等式的两边同时乘以一个数,结果仍是不等式D.相等的圆心角所对的弧相等2.如图,△ABC的顶点都在方格纸的格点上,那么的值为()A. B. C. D.3.如图,在圆O中,弦AB=4,点C在AB上移动,连接OC,过点C作CD⊥OC交圆O于点D,则CD的最大值为()A. B.2 C. D.4.如图,⊙O是△ABC的外接圆,∠C=60°,则∠AOB的度数是()A.30° B.60° C.120° D.150°5.一元二次方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.有一个实数根 D.无实数根6.如图,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点B,点C是AB的中点,∠ECD绕点C按顺时针旋转,且∠ECD=45°,∠ECD的一边CE交y轴于点F,开始时另一边CD经过点O,点G坐标为(-2,0),当∠ECD旋转过程中,射线CD与x轴的交点由点O到点G的过程中,则经过点B、C、F三点的圆的圆心所经过的路径长为()A. B. C. D.7.已知菱形的周长为40cm,两对角线长度比为3:4,则对角线长分别为()A.12cm.16cm B.6cm,8cm C.3cm,4cm D.24cm,32cm8.如图是二次函数y=ax2+bx+c的图象,对于下列说法:其中正确的有()①ac>0,②2a+b>0,③4ac<b2,④a+b+c<0,⑤当x>0时,y随x的增大而减小,A.5个 B.4个 C.3个 D.2个9.如图,的直径的长为,弦长为,的平分线交于,则长为()A.7 B.7 C.8 D.910.若关于的方程有两个相等的实数根,则的值是()A.-1 B.-3 C.3 D.611.以下五个图形中,是中心对称图形的共有()A.2个 B.3个 C.4个 D.5个12.方程x2+4x+4=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.有一个实数根 D.没有实数根二、填空题(每题4分,共24分)13.如图,以点O为位似中心,将四边形ABCD按1:2放大得到四边形A′B′C′D′,则四边形ABCD与四边形A′B′C′D′的面积比是_____.14.若抛物线的顶点在坐标轴上,则b的值为________.15.若=,则的值为________.16.同时抛掷两枚质地均匀的硬币,则两枚硬币全部正面向上的概率是.17.如图,已知矩形ABCD的两条边AB=1,AD=,以B为旋转中心,将对角线BD顺时针旋转60°得到线段BE,再以C为圆心将线段CD顺时针旋转90°得到线段CF,连接EF,则图中阴影部分面积为_____.18.有4根细木棒,它们的长度分别是2cm、4cm、6cm、8cm.从中任取3根恰好能搭成一个三角形的概率是_____.三、解答题(共78分)19.(8分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)方程ax2+bx+c=0的两个根为(2)y随x的增大而减小的自变量x的取值范围为;(3)若方程ax2+bx+c=k有两个不相等的实数根时,k的取值范围为;(4)求出此抛物线的解析式.20.(8分)如图,AB是⊙O的直径,CD切⊙O于点C,BE⊥CD于E,连接AC,BC.(1)求证:BC平分∠ABE;(2)若⊙O的半径为3,cosA=,求CE的长.21.(8分)已知关于x的方程:(m﹣2)x2+x﹣2=0(1)若方程有实数根,求m的取值范围.(2)若方程的两实数根为x1、x2,且x12+x22=5,求m的值.22.(10分)如图,在正方形中,点在边上,过点作于,且.(1)若,求正方形的周长;(2)若,求正方形的面积.23.(10分)在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的关系解析式,x满足什么值时y﹤0?(2)点p是直线AC上方的抛物线上一动点,是否存在点P,使△ACP面积最大?若存在,求出点P的坐标;若不存在,说明理由(3)点M为抛物线上一动点,在x轴上是否存在点Q,使以A、C、M、Q为顶点的四边形是平行四边形?若存在,直接写出点Q的坐标;若不存在,说明理由.24.(10分)市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):

第1次

第2次

第3次

第4次

第5次

第6次

10

9

8

8

10

9

10

10

8

10

7

9

(1)根据表格中的数据,分别计算出甲、乙两人的平均成绩;(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.25.(12分)现有甲、乙、丙三人组成的篮球训练小组,他们三人之间进行互相传球练习,篮球从一个人手中随机传到另外一个人手中计作传球一次,共连续传球三次.(1)若开始时篮球在甲手中,则经过第一次传球后,篮球落在丙的手中的概率是;(2)若开始时篮球在甲手中,求经过连续三次传球后,篮球传到乙的手中的概率.(请用画树状图或列表等方法求解)26.利用一面墙(墙的长度为20m),另三边用长58m的篱笆围成一个面积为200m2的矩形场地.求矩形场地的各边长?

参考答案一、选择题(每题4分,共48分)1、B【分析】根据随机事件、必然事件、不可能事件的定义,分别进行判断,即可得到答案.【详解】解:A、正五边形不是中心对称图形,故A是不可能事件;B、某课外实践活动小组有13名同学,至少有2名同学的出生月份相同,是必然事件,故B正确;C、不等式的两边同时乘以一个数,结果不一定是不等式,是随机事件,故C错误;D、在同圆或等圆中,相等的圆心角所对的弧相等,故D是随机事件,故D错误;故选:B.【点睛】本题考查了随机事件、必然事件、不可能事件的定义,解题的关键是熟练掌握定义,正确的进行判断.2、D【分析】把∠A置于直角三角形中,进而求得对边与斜边之比即可.【详解】解:如图所示,在Rt△ACD中,AD=4,CD=3,∴AC===5∴==.故选D.【点睛】本题考查了锐角三角函数的定义;合理构造直角三角形是解题关键.3、B【分析】连接OD,利用勾股定理得到CD,利用垂线段最短得到当OC⊥AB时,OC最小,根据垂径定理计算即可.【详解】连接OD,如图,设圆O的半径为r,∵CD⊥OC,∴∠DCO=90°,∴CD=,∴当OC的值最小时,CD的值最大,而OC⊥AB时,OC最小,此时D、B重合,则由垂径定理可得:CD=CB=AC=AB=1,∴CD的最大值为1.故答案为:1.【点睛】本题考查垂径定理和勾股定理,作辅助线构造直角三角形应用勾股定理,并熟记垂径定理内容是解题的关键.4、C【分析】根据圆周角定理即可得到结论.【详解】∵∠C=60°,∴∠AOB=2∠C=120°,故选:C.【点睛】本题考查了三角形的外接圆与外心,圆周角定理,熟练掌握圆周角定理是解题的关键.5、B【分析】把一元二次方程转换成一般式:(),再根据求根公式:,将相应的数字代入计算即可.【详解】解:由题得:∴一元二次方程有两个相等的实数根故选:B.【点睛】本题主要考查的是一元二次方程的一般式和求根公式,掌握一般式和求根公式是解题的关键.6、A【解析】先确定点B、A、C的坐标,①当点G在点O时,点F的坐标为(0,2),此时点F、B、C三点的圆心为BC的中点,坐标为(1,3);②当直线OD过点G时,利用相似求出点F的坐标,根据圆心在弦的垂直平分线上确定圆心在线段BC的垂直平分线上,故纵坐标为,利用两点间的距离公式求得圆心的坐标,由此可求圆心所走的路径的长度.【详解】∵直线与x轴交于点A,与y轴交于点B,∴B(0,4),A(4,0),∵点C是AB的中点,∴C(2,2),①当点G在点O时,点F的坐标为(0,2),此时点F、B、C三点的圆心为BC的中点,坐标为(1,3);②当直线OD过点G时,如图,连接CN,OC,则CN=ON=2,∴OC=,∵G(-2,0),∴直线GC的解析式为:,∴直线GC与y轴交点M(0,1),过点M作MH⊥OC,∵∠MOH=45,∴MH=OH=,∴CH=OC-OH=,∵∠NCO=∠FCG=45,∴∠FCN=∠MCH,又∵∠FNC=∠MHC,∴△FNC∽△MHC,∴,即,得FN=,∴F(,0),此时过点F、B、C三点的圆心在BF的垂直平分线上,设圆心坐标为(x,),则,解得,当∠ECD旋转过程中,射线CD与x轴的交点由点O到点G的过程中,则经过点B、C、F三点的圆的圆心所经过的路径为线段,即由BC的中点到点(,),∴所经过的路径长=.故选:A.【点睛】此题是一道综合题,考查一次函数的性质,待定系数法求函数的解析式,相似三角形的判定及性质定理,两点间的距离公式,综合性比较强,做题时需时时变换思想来解题.7、A【解析】试题分析:如图,四边形ABCD是菱形,且菱形的周长为40cm,设故选A.考点:1、菱形的性质;2、勾股定理.8、C【分析】根据二次函数的图象与性质,结合图象分别得出a,c,以及b2﹣4ac的符号进而求出答案.【详解】①由图象可知:a>0,c<0,∴ac<0,故①错误;②由于对称轴可知:﹣<1,∴2a+b>0,故②正确;③由于抛物线与x轴有两个交点,∴△=b2﹣4ac>0,故③正确;④由图象可知:x=1时,y=a+b+c<0,故④正确;⑤由图象可得,当x>﹣时,y随着x的增大而增大,故⑤错误;故正确的有3个.故选:C.【点睛】此题考查二次函数的一般式y=ax2+bx+c的性质,熟记各字母对函数图象的决定意义是解题的关键.9、B【解析】作DF⊥CA,交CA的延长线于点F,作DG⊥CB于点G,连接DA,DB.由CD平分∠ACB,根据角平分线的性质得出DF=DG,由HL证明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,从而求出CD=7.【详解】作DF⊥CA,垂足F在CA的延长线上,作DG⊥CB于点G,连接DA,DB,∵CD平分∠ACB,∴∠ACD=∠BCD∴DF=DG,,∴DA=DB,∵∠AFD=∠BGD=90°,∴△AFD≌△BGD,∴AF=BG.易证△CDF≌△CDG,∴CF=CG,∵AC=6,BC=8,∴AF=1,∴CF=7,∵△CDF是等腰直角三角形,∴CD=7,故选B.【点睛】本题综合考查了圆周角的性质,圆心角、弧、弦的对等关系,全等三角形的判定,角平分线的性质等,综合性较强,有一定的难度,正确添加辅助线、熟练应用相关知识是解题的关键.10、C【分析】根据方程有两个相等的实数根,判断出根的判别式为0,据此求解即可.【详解】∵关于的方程有两个相等的实数根,

∴,

解得:.故选:C.【点睛】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.11、B【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,进行判断.【详解】解:从左起第2、4、5个图形是中心对称图形.故选:B.【点睛】本题考查了中心对称的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.12、B【分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.【详解】解:∵△=b2﹣4ac=16﹣16=0∴方程有两个相等的实数根.故选:B.【点睛】本题考查了一元二次方程根的判别式的应用.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.二、填空题(每题4分,共24分)13、1:1.【解析】根据位似变换的性质定义得到四边形ABCD与四边形A′B′C′D′相似,根据相似多边形的性质计算即可.【详解】解:以点O为位似中心,将四边形ABCD按1:2放大得到四边形A′B′C′D′,则四边形ABCD与四边形A′B′C′D′相似,相似比为1:2,∴四边形ABCD与四边形A′B′C′D′的面积比是1:1,故答案为:1:1.【点睛】本题考查的是位似变换,如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形.14、±1或0【分析】抛物线y=ax2+bx+c的顶点坐标为(,),因为抛物线y=x2-bx+9的顶点在坐标轴上,所以分两种情况列式求解即可.【详解】解:∵,,∴顶点坐标为(,),当抛物线y=x2-bx+9的顶点在x轴上时,=0,解得b=±1.当抛物线y=x2-bx+9的顶点在y轴上时,=0,解得b=0,故答案为:±1或0【点睛】此题考查了学生的综合应用能力,解题的关键是掌握顶点的表示方法和x轴上的点的特点.15、【分析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】∵=,∴b=a,∴=,故答案为:.【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.16、.【解析】试题分析:画树状图为:共有4种等可能的结果数,其中两枚硬币全部正面向上的结果数为1,所以两枚硬币全部正面向上的概率=.故答案为.考点:列表法与树状图法.17、【分析】矩形ABCD的两条边AB=1,AD=,得到∠DBC=30°,由旋转的性质得到BD=BE,∠BDE=60°,求得∠CBE=∠DBC=30°,连接CE,根据全等三角形的性质得到∠BCE=∠BCD=90°,推出D,C,E三点共线,得到CE=CD=1,根据三角形和扇形的面积公式即可得到结论.【详解】∵矩形ABCD的两条边AB=1,AD=,∴,∴∠DBC=30°,∵将对角线BD顺时针旋转60°得到线段BE,∴BD=BE,∠BDE=60°,∴∠CBE=∠DBC=30°,连接CE,∴△DBC≌△EBC(SAS),∴∠BCE=∠BCD=90°,∴D,C,E三点共线,∴CE=CD=1,∴图中阴影部分面积=S△BEF+S△BCD+S扇形DCF﹣S扇形DBE=+﹣=,故答案为:.【点睛】本题考查了旋转的性质,解直角三角形,矩形的性质,扇形的面积计算等知识点,能求出各个部分的面积是解此题的关键.18、【分析】根据题意列举出所有4种等可能的结果数,再根据题意得出能够构成三角形的结果数,最后根据概率公式即可求解.【详解】从中任取3根共有4种等可能的结果数,它们为2、4、6;2、4、8;2、6、8;、4、6、8,其中恰好能搭成一个三角形为4、6、8,所以恰好能搭成一个三角形的概率=.故答案为.【点睛】本题考查列表法或树状图法和三角形三边关系,解题的关键是通过列表法或树状图法展示出所有等可能的结果数及求出构成三角形的结果数.三、解答题(共78分)19、(1)x1=1,x2=1;(2)x>2;(1)k<2;(4).【分析】(1)利用二次函数与x轴的交点坐标与对应一元二次方程的解的关系即可写出;(2)由图像可知,在对称轴的右侧,y随x的增大而减小;(1)方程ax2+bx+c=k有两个不相等的实数根,即函数y=ax2+bx+c(a≠0)与y=k有两个交点,画图分析即可;’(4)由图像可知:该抛物线的顶点是(2,2),过(1,0),设抛物线解析式为:,把(1,0)代入,求出a即可.【详解】解:(1)当y=0时,函数图象与x轴的两个交点的横坐标即为方程ax2+bx+c=0的两个根,由图可知,方程的两个根为x1=1,x2=1.故答案为:x1=1,x2=1.(2)根据函数图象,在对称轴的右侧,y随x的增大而减小,此时,x>2,故答案为:x>2(1)方程ax2+bx+c=k有两个不相等的实数根,即函数y=ax2+bx+c(a≠0)与y=k有两个交点,如图所示:当k>2时,y=ax2+bx+c(a≠0)与y=k无交点;当k=2时,y=ax2+bx+c(a≠0)与y=k只有一个交点;当k<2时,函数y=ax2+bx+c(a≠0)与y=k有两个交点,故当k<2时,方程ax2+bx+c=k有两个不相等的实数根.故答案为:k<2.(4)由图像可知:该抛物线的顶点是(2,2),过(1,0),∴设抛物线解析式为:把(1,0)代入得:,∴,∴,∴抛物线解析式为.【点睛】此题考查了二次函数与x轴的交点坐标与对应一元二次方程的解的关系、通过图像观察抛物线的增减性、利用画图解决抛物线与直线的交点个数问题、求函数解析式,掌握二次函数的性质是解题的关键.20、(1)证明见解析;(2).【分析】(1)根据切线的性质得OC⊥DE,则可判断OC∥BE,根据平行线的性质得∠OCB=∠CBE,加上∠OCB=∠CBO,所以∠OBC=∠CBE;(2)由已知数据可求出AC,BC的长,易证△BEC∽△BCA,由相似三角形的性质即可求出CE的长.【详解】(1)证明:∵CD是⊙O的切线,∴OC⊥DE,而BE⊥DE,∴OC∥BE,∴∠OCB=∠CBE,而OB=OC,∴∠OCB=∠CBO,∴∠OBC=∠CBE,即BC平分∠ABE;(2)∵⊙O的半径为3,∴AB=6,∵AB是⊙O的直径,∴∠ACB=90°,∵cosA=,∴=,∴AC=2,∴BC==2,∵∠ABC=∠ECB,∠ACB=∠BEC=90°,∴△BEC∽△BCA,∴=,即=,∴CE=.【点睛】本题考查了切线的性质,平行线的判定和性质,勾股定理的运用以及相似三角形的判定和性质,熟记和圆有关的各种性质定理是解题的关键.21、(1)m≥;(2)m=3【分析】(1)根据判别式即可求出答案;(2)根据根与系数的关系即可求出答案.【详解】解:(1)当m﹣2≠0时,△=1+8(m﹣2)≥0,∴m≥且m≠2,当m﹣2=0时,x﹣2=0,符合题意,综上所述,m≥(2)由根与系数的关系可知:x1+x2=,x1x2=,∵x12+x22=5,∴(x1+x2)2﹣2x1x2=5,∴+=5,∴=1或=﹣5,∴m=3或m=(舍去).【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.22、(1);(2).【分析】(1)利用AA定理证明,从而得到,设,分别用含x的式子表示出AB,BE,ED,代入比例式,求出x的值,从而求正方形周长;(2)在上取一点,使,连接,利用等腰直角三角形的性质求得,,,然后利用勾股定理求得,从而求解正方形面积.【详解】解:(1)∵四边形是正方形,∴.∵,∴.∴.∵,∴.∴.设.∵,∴.∴.∴,∴,即.∴正方形的周长为.(2)如图,在上取一点,使,连接.∵,,∴.又因为∠ABD=∠ADB=45°∴.∴.在中,,∴.∴.在中,.∴正方形的面积.【点睛】本题考查相似三角形的判定和性质,正方形的性质,等腰直角三角形的判定和性质以及勾股定理的应用,添加辅助线构造等腰直角三角形是本题的解题关键.23、(1),或;(2)P;(3)【分析】(1)将点A(﹣3,0),B(1,0)带入y=ax2+bx+2得到二元一次方程组,解得即可得出函数解析式;又从图像可以看出x满足什么值时y﹤0;(2)设出P点坐标,利用割补法将△ACP面积转化为,带入各个三角形面积算法可得出与m之间的函数关系,分析即可得出面积的最大值;(3)分两种情况讨论,一种是CM平行于x轴,另一种是CM不平行于x轴,画出点Q大概位置,利用平行四边形性质即可得出关于点Q坐标的方程,解出即可得到Q点坐标.【详解】解:(1)将A(﹣3,0),B(1,0)两点带入y=ax2+bx+2可得:解得:∴二次函数解析式为.由图像可知,当或时y﹤0;综上:二次函数解析式为,当或时y﹤0;(2)设点P坐标为,如图连接PO,作PM⊥x轴于M,PN⊥y轴于N.PM=,PN=,AO=3.当时,,所以OC=2,∵∴函数有最大值,当时,有最大值,此时;所以存在点,使△ACP面积最大.(3)存在,假设存在点Q使以A、C、M、Q为顶点的四边形是平行四边形①若CM平行于x轴,如下图,有符合要求的两个点此时=∵CM∥x轴,∴点M、点C(0,2)关于对称轴对称,∴M(﹣2,2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论