版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省无锡市锡中学实验学校2025届数学九上期末复习检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.关于反比例函数y=﹣的图象,下列说法正确的是()A.经过点(﹣1,﹣4)B.图象是轴对称图形,但不是中心对称图形C.无论x取何值时,y随x的增大而增大D.点(,﹣8)在该函数的图象上2.两相似三角形的相似比为,它们的面积之差为15,则面积之和是()A.39 B.75 C.76 D.403.在Rt△ABC中,∠C=90°,、、所对的边分别为a、b、c,如果a=3b,那么∠A的余切值为()A. B.3 C. D.4.如图,在平面直角坐标系中,Rt△ABO中,∠ABO=90°,OB边在x轴上,将△ABO绕点B顺时针旋转60°得到△CBD.若点A的坐标为(-2,2),则点C的坐标为()A.(,1) B.(1,) C.(1,2) D.(2,1)5.二次函数的图象与x轴的交点的横坐标分别为﹣1和3,则的图象与x轴的交点的横坐标分别为()A.1和5 B.﹣3和1 C.﹣3和5 D.3和56.若点都是反比例函数的图象上的点,并且,则下列各式中正确的是(()A. B. C. D.7.下列事件中,属于随机事件的是().A.13名同学中至少有两名同学的生日在同一个月B.在只有白球的盒子里摸到黑球C.经过交通信号灯的路口遇到红灯D.用长为,,的三条线段能围成一个边长分别为,,的三角形8.如图,线段AB是⊙O的直径,弦,,则等于().A. B. C. D.9.把抛物线y=﹣2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为()A.y=﹣2(x+1)2+2B.y=﹣2(x+1)2﹣2C.y=﹣2(x﹣1)2+2D.y=﹣2(x﹣1)2﹣210.有三张正面分别标有数字-2,3,4的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后,从中任取一张(不放回),再从剩余的卡片中任取一张,则两次抽取的卡片上的数字之积为正偶数的概率是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,△ABC中,AB=6,BC=1.如果动点D以每秒2个单位长度的速度,从点B出发沿边BA向点A运动,此时直线DE∥BC,交AC于点E.记x秒时DE的长度为y,写出y关于x的函数解析式_____(不用写自变量取值范围).12.如图,在平面直角坐标系中,点A是x轴正半轴上一点,菱形OABC的边长为5,且tan∠COA=,若函数的图象经过顶点B,则k的值为________.13.如图,在平面直角坐标系中,直线l的函数表达式为y=x,点O1的坐标为(1,0),以O1为圆心,O1O为半径画圆,交直线l于点P1,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交直线l于点P2,交x轴正半轴于点O3,以O3为圆心,O3O为半径画圆,交直线l于点P3,交x轴正半轴于点O4;…按此做法进行下去,其中的长为_____.14.方程的根是________.15.点A(﹣2,3)关于原点对称的点的坐标是_____.16.如图,在平面直角坐标系中,将边长为1的正方形绕点逆时针旋转45°后得到正方形,继续旋转至2020次得到正方形,那点的坐标是__________.17.某服装店搞促销活动,将一种原价为56元的衬衣第一次降价后,销售量仍然不好,又进行第二次降价,两次降价的百分率相同,现售价为31.5元,设降价的百分率为x,则列出方程是______________.18.如图,四边形ABCD内接于⊙O,F是上一点,且,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为______度.三、解答题(共66分)19.(10分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)证明:△APD≌△CPD;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.20.(6分)如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0),C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式;(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD=m,△PCD的面积为S,①求S与m的函数关系式,写出自变量m的取值范围.②当S取得最值时,求点P的坐标;(3)在MB上是否存在点P,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.21.(6分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D、E分别是边BC、AC上的两个动点,且DE=4,P是DE的中点,连接PA,PB,则PA+PB的最小值为_____.22.(8分)某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件(1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A、B两种营销方案方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元请比较哪种方案的最大利润更高,并说明理由23.(8分)如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接DG,过点A作AH∥DG,交BG于点H.连接HF,AF,其中AF交EC于点M.(1)求证:△AHF为等腰直角三角形.(2)若AB=3,EC=5,求EM的长.24.(8分)如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成矩形零件PQMN,使矩形PQMN的边QM在BC上,其余两个项点P,N分别在AB,AC上.(1)当矩形的边PN=PQ时,求此时矩形零件PQMN的面积;(2)求这个矩形零件PQMN面积S的最大值.25.(10分)如图,是□ABCD的边延长线上一点,连接,交于点.求证:△∽△CDF.26.(10分)如图,在矩形ABCD中,BD的垂直平分线交AD于E,交BC于F,连接BE、DF.(1)判断四边形BEDF的形状,并说明理由;(2)若AB=8,AD=16,求BE的长.
参考答案一、选择题(每小题3分,共30分)1、D【分析】反比例函数的图象时位于第一、三象限,在每个象限内,y随x的增大而减小;时位于第二、四象限,在每个象限内,y随x的增大而增大;在不同象限内,y随x的增大而增大,根据这个性质选择则可.【详解】∵当时,∴点(,﹣8)在该函数的图象上正确,故A、B、C错误,不符合题意.故选:D.【点睛】本题考查了反比例函数的性质,掌握反比例函数的性质及代入求点坐标是解题的关键.2、A【分析】由两相似三角形的相似比为,得它们的面积比为4:9,设它们的面积分别为4x,9x,列方程,即可求解.【详解】∵两相似三角形的相似比为,∴它们的面积比为4:9,设它们的面积分别为4x,9x,则9x-4x=15,∴x=3,∴9x+4x=13x=13×3=39.故选A.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的面积比等于相似比的平方,是解题的关键.3、A【分析】根据锐角三角函数的定义,直接得出cotA=,即可得出答案.【详解】解:在Rt△ABC中,∠C=90°,a=3b,∴;故选择:A.【点睛】此题主要考查了锐角三角函数的定义,熟练地应用锐角三角函数的定义是解决问题的关键.4、B【解析】作CH⊥x轴于H,如图,∵点A的坐标为(−2,),AB⊥x轴于点B,∴tan∠BAC=,∴∠A=,∵△ABO绕点B逆时针旋转60∘得到△CBD,∴BC=BA=,OB=2,∠CBH=,在Rt△CBH中,,,OH=BH−OB=3−2=1,∴故选:B.【点睛】根据直线解析式求出点A的坐标,然后求出AB、OB,再利用勾股定理列式求出OA,然后判断出∠C=30°,CD∥x轴,再根据直角三角形30°角所对的直角边等于斜边的一半求出BE,利用勾股定理列式求出CE,然后求出点C的横坐标,再写出点C的坐标即可.5、A【分析】根据二次函数图象的平移规律可得交点的横坐标.【详解】解:∵二次函数y=(x+m)2+n的图象与x轴的交点的横坐标分别为﹣1和3,∴y=(x+m﹣2)2+n的图象与x轴的交点的横坐标分别为:﹣1+2=1和3+2=5,故选:A.【点睛】本题考查抛物线与x轴的交点,解答本题的关键是明确题意,利用平移的性质和点的坐标平移的性质解答.6、B【详解】解:根据题意可得:∴反比例函数处于二、四象限,则在每个象限内为增函数,且当x<0时y>0,当x>0时,y<0,∴<<.7、C【分析】根据随机事件,必然事件,不可能事件的定义对每一选项进行判断即可.【详解】A、必然事件,不符合题意;B、不可能事件,不符合题意;C、随机事件,符合题意;D、不可能事件,不符合题意;故选C.【点睛】本题考查随机事件,正确理解随机事件,必然事件,不可能事件的定义是解题的关键.8、C【分析】先根据垂径定理得到,再根据圆周角定理得∠BOD=2∠CAB=40°,然后利用邻补角的定义计算∠AOD的度数.【详解】∵CD⊥AB,∴,∴∠BOD=2∠CAB=2×20°=40°,∴∠AOD=180°-∠BOD=180°-40°=140°.故答案为C.【点睛】本题考查圆中的角度计算,熟练掌握垂径定理和圆周角定理是关键.9、C【详解】解:把抛物线y=﹣2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为y=﹣2(x﹣1)2+2,故选C.10、C【详解】画树状图得:
∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,
∴两次抽取的卡片上的数字之积为正偶数的概率是:.故选C.【点睛】本题考查运用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.二、填空题(每小题3分,共24分)11、y=﹣3x+1【分析】由DE∥BC可得出△ADE∽△ABC,再利用相似三角形的性质,可得出y关于x的函数解析式.【详解】∵DE∥BC,∴△ADE∽△ABC,∴,即,∴y=﹣3x+1.故答案为:y=﹣3x+1.【点睛】本题考查根据实际问题列函数关系式,利用相似三角形的性质得出是关键.12、1【分析】作BD⊥x轴于点D,如图,根据菱形的性质和平行线的性质可得∠BAD=∠COA,于是可得,在Rt△ABD中,由AB=5则可根据勾股定理求出BD和AD的长,进而可得点B的坐标,再把点B坐标代入双曲线的解析式即可求出k.【详解】解:作BD⊥x轴于点D,如图,∵菱形OABC的边长为5,∴AB=OA=5,AB∥OC,∴∠BAD=∠COA,∴在Rt△ABD中,设BD=3x,AD=4x,则根据勾股定理得:AB=5x=5,解得:x=1,∴BD=3,AD=4,∴OD=9,∴点B的坐标是(9,3),∵的图象经过顶点B,∴k=3×9=1.故答案为:1.【点睛】本题考查了菱形的性质、解直角三角形、勾股定理和待定系数法求函数的解析式等知识,属于常考题型,熟练应用上述知识、正确求出点B的坐标是解题的关键.13、22015π【分析】连接P1O1,P2O2,P3O3,易求得PnOn垂直于x轴,可知为圆的周长,再找出圆半径的规律即可解题.【详解】解:连接P1O1,P2O2,P3O3…,∵P1是⊙O1上的点,∴P1O1=OO1,∵直线l解析式为y=x,∴∠P1OO1=45°,∴△P1OO1为等腰直角三角形,即P1O1⊥x轴,同理,PnOn垂直于x轴,∴为圆的周长,∵以O1为圆心,O1O为半径画圆,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交x轴正半轴于点O3,以此类推,∴OO1=1=20,OO2=2=21,OO3=4=22,OO4=8=23,…,∴OOn=,∴,∴,故答案为:22015π.【点睛】本题考查了图形类规律探索、一次函数的性质、等腰直角三角形的性质以及弧长的计算,本题中准确找到圆半径的规律是解题的关键.14、x1=0,x1=1【分析】先移项,再用因式分解法求解即可.【详解】解:∵,∴,∴x(x-1)=0,x1=0,x1=1.故答案为:x1=0,x1=1.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.15、(2,﹣3)【分析】根据两个点关于原点对称,它们的坐标符号相反求解即可.【详解】点P(-2,3)关于原点对称的点的坐标为(2,-3),故本题正确答案为(2,-3).【点睛】本题考查了关于原点对称的性质,掌握两个点关于原点对称,它们的坐标符号相反是解决本题的关键.16、(-1,-1)【分析】连接OB,根据图形可知,点B在以点O为圆心、、OB为半径的圆上运用,将正方形OABC绕点O逆时针依次旋转45°,可得点B的对应点坐标,根据图形及对应点的坐标发现是8次一个循环,进而得出结论.【详解】解:如图,∵四边形OABC是正方形,且OA=1,∴B(1,1),连接OB,由勾股定理可得,由旋转的性质得:将正方形OABC绕点O逆时针依次旋转45°,得:,∴,,,,…,可发现8次一循环,∵,∴点的坐标为,故答案为.【点睛】本题考查了几何图形的规律探究,根据计算得出“8次一个循环”是解题的关键.17、=31.1【分析】根据题意,第一次降价后的售价为,第二次降价后的售价为,据此列方程得解.【详解】根据题意,得:=31.1故答案为:=31.1.【点睛】本题考查一元二次方程的应用,关键是理解第二次降价是以第一次降价后的售价为单位“1”的.18、1【分析】根据圆内接四边形的性质求出∠ADC的度数,由圆周角定理得出∠DCE的度数,根据三角形外角的性质即可得出结论.【详解】∵四边形ABCD内接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°,∵,∠BAC=25°,∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=1°,故答案为:1.【点睛】本题考查了圆内接四边形的问题,掌握圆内接四边形的性质、圆周角定理、三角形外角的性质是解题的关键.三、解答题(共66分)19、(1)证明见解析;(2)90°;(3)AP=CE.【分析】(1)利用正方形得到AD=CD,∠ADP=∠CDP=45,即可证明全等;(2)设,利用三角形内角和性质及外角性质得到,,再利用周角计算得出x值;(3)AP=CE.设,利用三角形内角和性质及外角性质得到,,求出,得到是等边三角形,即可证得AP=CE.【详解】解:(1)四边形ABCD是正方形,∴AD=CD,∠ADP=∠CDP=45,在与中,,∴;(2)设,由(1)得,,因为PA=PE,所以所以;(3)AP=CE.设,由(1)得,,∵PA=PE且在菱形ABCD中,∴,∴,由(1)得PA=PC,∴PC=PE,∴是等边三角形,∴PE=PC=CE,∴AP=CE.【点睛】此题考查全等三角形的判定,正方形的性质,菱形的性质,三角形的内角和及外角性质,(2)与(3)图形有变化,解题思路不变,做题中注意总结解题的方法.20、(1)y=﹣x2+2x+3;(2)①S=﹣m2+3m,1≤m≤3;②P(,3);(3)存在,点P的坐标为(,3)或(﹣3+3,12﹣6).【分析】(1)将点B,C的坐标代入即可;(2)①求出顶点坐标,直线MB的解析式,由PD⊥x轴且知P(m,﹣2m+6),即可用含m的代数式表示出S;②在①的情况下,将S与m的关系式化为顶点式,由二次函数的图象及性质即可写出点P的坐标;(3)分情况讨论,如图2﹣1,当时,推出,则点P纵坐标为3,即可写出点P坐标;如图2﹣2,当时,证,由锐角三角函数可求出m的值,即可写出点P坐标;当时,不存在点P.【详解】(1)将点B(3,0),C(0,3)代入,得,解得,∴二次函数的解析式为;(2)①∵,∴顶点M(1,4),设直线BM的解析式为,将点B(3,0),M(1,4)代入,得,解得,∴直线BM的解析式为,∵PD⊥x轴且,∴P(m,﹣2m+6),∴,即,∵点P在线段BM上,且B(3,0),M(1,4),∴;②∵,∵,∴当时,S取最大值,∴P(,3);(3)存在,理由如下:①如图2﹣1,当时,∵,∴四边形CODP为矩形,∴,将代入直线,得,∴P(,3);②如图2﹣2,当∠PCD=90°时,∵,,∴,∵,∴,∴,∴,∴,∴,解得(舍去),,∴P(,),③当时,∵PD⊥x轴,∴不存在,综上所述,点P的坐标为(,3)或(,).【点睛】本题考查了二次函数的动点问题,掌握二次函数的性质以及解二次函数的方法是解题的关键.21、【分析】连接PC,则PC=DE=2,在CB上截取CM=0.25,得出△CPM∽△CBP,即可得出结果.【详解】解:连接PC,则PC=DE=2,∴P在以C为圆心,2为半径的圆弧上运动,在CB上截取CM=0.25,连接MP,∴,∴,∵∠MCP=∠PCB,∴△CPM∽△CBP,∴PM=PB,∴PA+PB=PA+PM,∴当P、M、A共线时,PA+PB最小,即.【点睛】本题考查了最短路径问题,相似三角形的判定与性质,正确做出辅助线是解题的关键.22、(1)w=-10x2+700x-10000;(2)即销售单价为35元时,该文具每天的销售利润最大;(3)A方案利润更高.【分析】试题分析:(1)根据利润=(单价-进价)×销售量,列出函数关系式即可.(2)根据(1)式列出的函数关系式,运用配方法求最大值.(3)分别求出方案A、B中x的取值范围,然后分别求出A、B方案的最大利润,然后进行比较.【详解】解:(1)w=(x-20)(250-10x+250)=-10x2+700x-10000.(2)∵w=-10x2+700x-10000=-10(x-35)2+2250∴当x=35时,w有最大值2250,即销售单价为35元时,该文具每天的销售利润最大.(3)A方案利润高,理由如下:A方案中:20<x≤30,函数w=-10(x-35)2+2250随x的增大而增大,∴当x=30时,w有最大值,此时,最大值为2000元.B方案中:,解得x的取值范围为:45≤x≤49.∵45≤x≤49时,函数w=-10(x-35)2+2250随x的增大而减小,∴当x=45时,w有最大值,此时,最大值为1250元.∵2000>1250,∴A方案利润更高23、(1)见解析;(2)EM=【分析】(1)通过证明四边形AHGD是平行四边形,可得AH=DG,AD=HG=CD,由“SAS”可证△DCG≌△HGF,可得DG=HF,∠HFG=∠HGD,可证AH⊥HF,AH=HF,即可得结论;
(2)由题意可得DE=2,由平行线分线段成比例可得,即可求EM的长.【详解】证明:(1)∵四边形ABCD,四边形ECGF都是正方形∴DA∥BC,AD=CD,FG=CG,∠B=∠CGF=90°∵AD∥BC,AH∥DG,∴四边形AHGD是平行四边形∴AH=DG,AD=HG=CD,∵CD=HG,∠ECG=∠CGF=90°,FG=CG,∴△DCG≌△HGF(SAS),∴DG=HF,∠HFG=∠HGD∴AH=HF,∵∠HGD+∠DGF=90°,∴∠HFG+∠DGF=90°∴DG⊥HF,且AH∥DG,∴AH⊥HF,且AH=HF∴△AHF为等腰直角三角形.(2)∵AB=3,EC=1,∴AD=CD=3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度企业培训中心新生入学服务协议书3篇
- 2024-2030年中国家庭食物垃圾处理器行业运行动态与发展战略分析报告
- 2024年度工厂总经理绩效考核合同2篇
- 2024年某市区居民区垃圾清运服务定制合同
- 2024安置房买卖协议样本3篇
- 2024年物流合作共识:货车租赁合同模板
- 综合项目-毕业纪念册实训项目指导书
- 2024全新商务办公楼使用权出售协议下载3篇
- 2024年度橱柜定制与绿色建材采购合同3篇
- 2024年度加盟商合作合同5篇
- 变更索赔成功案例-某工程窝工变更索赔报告
- GB 19517-2004国家电气设备安全技术规范
- 模具定期保养点检表
- 山西省太原市市药品零售药店企业药房名单目录
- 工程部长桥梁工程施工技术(PPT116)
- 全面设备保养TPM培训教材课件
- 茶叶企业营销课件
- 高炉无料钟炉顶设备安装与调试技术
- 初中语文人教九年级上册如何分析环境描写的作用 教案
- 压力容器壁厚快速计算
- 抗菌药物供应目录备案表
评论
0/150
提交评论