2023届福建省福州市长乐区长乐高级中学数学高三第一学期期末预测试题含解析_第1页
2023届福建省福州市长乐区长乐高级中学数学高三第一学期期末预测试题含解析_第2页
2023届福建省福州市长乐区长乐高级中学数学高三第一学期期末预测试题含解析_第3页
2023届福建省福州市长乐区长乐高级中学数学高三第一学期期末预测试题含解析_第4页
2023届福建省福州市长乐区长乐高级中学数学高三第一学期期末预测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高三上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的两条渐近线与抛物线的准线分别交于点、,O为坐标原点.若双曲线的离心率为2,三角形AOB的面积为,则p=().A.1 B. C.2 D.32.已知数列中,,若对于任意的,不等式恒成立,则实数的取值范围为()A. B.C. D.3.已知为定义在上的奇函数,若当时,(为实数),则关于的不等式的解集是()A. B. C. D.4.设,若函数在区间上有三个零点,则实数的取值范围是()A. B. C. D.5.定义运算,则函数的图象是().A. B.C. D.6.等比数列的各项均为正数,且,则()A.12 B.10 C.8 D.7.设为自然对数的底数,函数,若,则()A. B. C. D.8.已知是偶函数,在上单调递减,,则的解集是A. B.C. D.9.已知平面向量满足,且,则所夹的锐角为()A. B. C. D.010.若的展开式中二项式系数和为256,则二项式展开式中有理项系数之和为()A.85 B.84 C.57 D.5611.如图,已知直线与抛物线相交于A,B两点,且A、B两点在抛物线准线上的投影分别是M,N,若,则的值是()A. B. C. D.12.盒子中有编号为1,2,3,4,5,6,7的7个相同的球,从中任取3个编号不同的球,则取的3个球的编号的中位数恰好为5的概率是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则下列结论中正确的是_________.①是周期函数;②的对称轴方程为,;③在区间上为增函数;④方程在区间有6个根.14.若存在实数使得不等式在某区间上恒成立,则称与为该区间上的一对“分离函数”,下列各组函数中是对应区间上的“分离函数”的有___________.(填上所有正确答案的序号)①,,;②,,;③,,;④,,.15.(5分)已知为实数,向量,,且,则____________.16.在平面直角坐标系中,点在单位圆上,设,且.若,则的值为________________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在①,②,③这三个条件中任选一个,补充在下面问题中.若问题中的正整数存在,求的值;若不存在,说明理由.设正数等比数列的前项和为,是等差数列,__________,,,,是否存在正整数,使得成立?18.(12分)已知函数的图象向左平移后与函数图象重合.(1)求和的值;(2)若函数,求的单调递增区间及图象的对称轴方程.19.(12分)如图在棱锥中,为矩形,面,(1)在上是否存在一点,使面,若存在确定点位置,若不存在,请说明理由;(2)当为中点时,求二面角的余弦值.20.(12分)已知函数.(1)当时,求不等式的解集;(2)若关于的不等式的解集包含,求实数的取值范围.21.(12分)已知等差数列an,和等比数列b(I)求数列{an}(II)求数列n2an⋅a22.(10分)为迎接2022年冬奥会,北京市组织中学生开展冰雪运动的培训活动,并在培训结束后对学生进行了考核.记表示学生的考核成绩,并规定为考核优秀.为了了解本次培训活动的效果,在参加培训的学生中随机抽取了30名学生的考核成绩,并作成如下茎叶图:(Ⅰ)从参加培训的学生中随机选取1人,请根据图中数据,估计这名学生考核优秀的概率;(Ⅱ)从图中考核成绩满足的学生中任取2人,求至少有一人考核优秀的概率;(Ⅲ)记表示学生的考核成绩在区间的概率,根据以往培训数据,规定当时培训有效.请根据图中数据,判断此次中学生冰雪培训活动是否有效,并说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】试题分析:抛物线的准线为,双曲线的离心率为2,则,,渐近线方程为,求出交点,,,则;选C考点:1.双曲线的渐近线和离心率;2.抛物线的准线方程;2、B【解析】

先根据题意,对原式进行化简可得,然后利用累加法求得,然后不等式恒成立转化为恒成立,再利用函数性质解不等式即可得出答案.【详解】由题,即由累加法可得:即对于任意的,不等式恒成立即令可得且即可得或故选B【点睛】本题主要考查了数列的通项的求法以及函数的性质的运用,属于综合性较强的题目,解题的关键是能够由递推数列求出通项公式和后面的转化函数,属于难题.3、A【解析】

先根据奇函数求出m的值,然后结合单调性求解不等式.【详解】据题意,得,得,所以当时,.分析知,函数在上为增函数.又,所以.又,所以,所以,故选A.【点睛】本题主要考查函数的性质应用,侧重考查数学抽象和数学运算的核心素养.4、D【解析】令,可得.在坐标系内画出函数的图象(如图所示).当时,.由得.设过原点的直线与函数的图象切于点,则有,解得.所以当直线与函数的图象切时.又当直线经过点时,有,解得.结合图象可得当直线与函数的图象有3个交点时,实数的取值范围是.即函数在区间上有三个零点时,实数的取值范围是.选D.点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.5、A【解析】

由已知新运算的意义就是取得中的最小值,因此函数,只有选项中的图象符合要求,故选A.6、B【解析】

由等比数列的性质求得,再由对数运算法则可得结论.【详解】∵数列是等比数列,∴,,∴.故选:B.【点睛】本题考查等比数列的性质,考查对数的运算法则,掌握等比数列的性质是解题关键.7、D【解析】

利用与的关系,求得的值.【详解】依题意,所以故选:D【点睛】本小题主要考查函数值的计算,属于基础题.8、D【解析】

先由是偶函数,得到关于直线对称;进而得出单调性,再分别讨论和,即可求出结果.【详解】因为是偶函数,所以关于直线对称;因此,由得;又在上单调递减,则在上单调递增;所以,当即时,由得,所以,解得;当即时,由得,所以,解得;因此,的解集是.【点睛】本题主要考查由函数的性质解对应不等式,熟记函数的奇偶性、对称性、单调性等性质即可,属于常考题型.9、B【解析】

根据题意可得,利用向量的数量积即可求解夹角.【详解】因为即而所以夹角为故选:B【点睛】本题考查了向量数量积求夹角,需掌握向量数量积的定义求法,属于基础题.10、A【解析】

先求,再确定展开式中的有理项,最后求系数之和.【详解】解:的展开式中二项式系数和为256故,要求展开式中的有理项,则则二项式展开式中有理项系数之和为:故选:A【点睛】考查二项式的二项式系数及展开式中有理项系数的确定,基础题.11、C【解析】

直线恒过定点,由此推导出,由此能求出点的坐标,从而能求出的值.【详解】设抛物线的准线为,直线恒过定点,如图过A、B分别作于M,于N,由,则,点B为AP的中点、连接OB,则,∴,点B的横坐标为,∴点B的坐标为,把代入直线,解得,故选:C.【点睛】本题考查直线与圆锥曲线中参数的求法,考查抛物线的性质,是中档题,解题时要注意等价转化思想的合理运用,属于中档题.12、B【解析】

由题意,取的3个球的编号的中位数恰好为5的情况有,所有的情况有种,由古典概型的概率公式即得解.【详解】由题意,取的3个球的编号的中位数恰好为5的情况有,所有的情况有种由古典概型,取的3个球的编号的中位数恰好为5的概率为:故选:B【点睛】本题考查了排列组合在古典概型中的应用,考查了学生综合分析,概念理解,数学运算的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、①②④【解析】

由函数,对选项逐个验证即得答案.【详解】函数,是周期函数,最小正周期为,故①正确;当或时,有最大值或最小值,此时或,即或,即.的对称轴方程为,,故②正确;当时,,此时在上单调递减,在上单调递增,在区间上不是增函数,故③错误;作出函数的部分图象,如图所示方程在区间有6个根,故④正确.故答案为:①②④.【点睛】本题考查三角恒等变换,考查三角函数的性质,属于中档题.14、①②④【解析】

由题意可知,若要存在使得成立,我们可考虑两函数是否存在公切点,若两函数在公切点对应的位置一个单增,另一个单减,则很容易判断,对①,③,④都可以采用此法判断,对②分析式子特点可知,,进而判断【详解】①时,令,则,单调递增,,即.令,则,单调递减,,即,因此,满足题意.②时,易知,满足题意.③注意到,因此如果存在直线,只有可能是(或)在处的切线,,因此切线为,易知,,因此不存在直线满足题意.④时,注意到,因此如果存在直线,只有可能是(或)在处的切线,,因此切线为.令,则,易知在上单调递增,在上单调递减,所以,即.令,则,易知在上单调递减,在上单调递增,所以,即.因此,满足题意.故答案为:①②④【点睛】本题考查新定义题型、利用导数研究函数图像,转化与化归思想,属于中档题15、5【解析】

由,,且,得,解得,则,则.16、【解析】

根据三角函数定义表示出,由同角三角函数关系式结合求得,而,展开后即可由余弦差角公式求得的值.【详解】点在单位圆上,设,由三角函数定义可知,因为,则,所以由同角三角函数关系式可得,所以故答案为:.【点睛】本题考查了三角函数定义,同角三角函数关系式的应用,余弦差角公式的应用,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、见解析【解析】

根据等差数列性质及、,可求得等差数列的通项公式,由即可求得的值;根据等式,变形可得,分别讨论取①②③中的一个,结合等比数列通项公式代入化简,检验是否存在正整数的值即可.【详解】∵在等差数列中,,∴,∴公差,∴,∴,若存在正整数,使得成立,即成立,设正数等比数列的公比为的公比为,若选①,∵,∴,∴,∴,∴当时,满足成立.若选②,∵,∴,∴,∴,∴方程无正整数解,∴不存在正整数使得成立.若选③,∵,∴,∴,∴,∴解得或(舍去),∴,∴当时,满足成立.【点睛】本题考查了等差数列通项公式的求法,等比数列通项公式及前n项和公式的应用,递推公式的简单应用,补充条件后求参数的值,属于中档题.18、(1),;(2),,.【解析】

(1)直接利用同角三角函数关系式的变换的应用求出结果.(2)首先把函数的关系式变形成正弦型函数,进一步利用正弦型函数的性质的应用求出结果.【详解】(1)由题意得,,(2)由,解得,所以对称轴为,.由,解得,所以单调递增区间为.,【点睛】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力,属于基础题型.19、(1)见解析;(2)【解析】

(1)要证明PC⊥面ADE,由已知可得AD⊥PC,只需满足即可,从而得到点E为中点;(2)求出面ADE的法向量,面PAE的法向量,利用空间向量的数量积,求解二面角P﹣AE﹣D的余弦值.【详解】(1)法一:要证明PC⊥面ADE,易知AD⊥面PDC,即得AD⊥PC,故只需即可,所以由,即存在点E为PC中点.法二:建立如图所示的空间直角坐标系D-XYZ,由题意知PD=CD=1,,设,,,由,得,即存在点E为PC中点.(2)由(1)知,,,,,,设面ADE的法向量为,面PAE的法向量为由的法向量为得,得,同理求得所以,故所求二面角P-AE-D的余弦值为.【点睛】本题考查二面角的平面角的求法,考查直线与平面垂直的判定定理的应用,考查空间想象能力以及计算能力.20、(1)(2)【解析】

(1)按进行分类,得到等价不等式组,分别解出解集,再取并集,得到答案;(2)将问题转化为在时恒成立,按和分类讨论,分别得到不等式恒成立时对应的的范围,再取交集,得到答案.【详解】解:(1)当时,等价于或或,解得或或,所以不等式的解集为:.(2)依题意即在时恒成立,当时,,即,所以对恒成立∴,得;当时,,即,所以对任意恒成立,∴,得∴,综上,.【点睛】本题考查分类讨论解绝对值不等式,分类讨论研究不等式恒成立问题,属于中档题.21、(I)an=2n-1,bn=【解析】

(I)直接利用等差数列,等比数列公式联立方程计算得到答案.(II)n2【详解】(I)a1=b解得d=2q=3,故an=2n-1(II)n=14+【点睛】本题考查了等差数列,等比数列,裂项求和,意在考查学生对于数列公式方法的综合应用.22、(Ⅰ)(Ⅱ)(Ⅲ)见解析【解析】

(Ⅰ)根据茎叶图求出满

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论