




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届广西壮族自治区柳州市柳州高级中学高一数学第二学期期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.的内角的对边分别为,面积为,若,则外接圆的半径为()A. B. C. D.2.已知某几何体的三视图如图所示,则该几何体的表面积为()A. B. C. D.3.已知函数在上单调递增,且的图象关于对称.若,则的解集为()A. B.C. D.4.问题:①有1000个乒乓球分别装在3个箱子内,其中红色箱子内有500个,蓝色箱子内有200个,黄色箱子内有300个,现从中抽取一个容量为100的样本;②从20名学生中选出3名参加座谈会.方法:Ⅰ.随机抽样法Ⅱ.系统抽样法Ⅲ.分层抽样法.其中问题与方法能配对的是()A.①Ⅰ,②Ⅱ B.①Ⅲ,②Ⅰ C.①Ⅱ,②Ⅲ D.①Ⅲ,②Ⅱ5.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为A.35 B.20 C.18 D.96.某中学高一从甲、乙两个班中各选出7名学生参加2019年第三十届“希望杯”全国数学邀请赛,他们取得成绩的茎叶图如图,其中甲班学生成绩的平均数是84,乙班学生成绩的中位数是83,则的值为()A.4 B.5 C.6 D.77.已知是两条不同直线,是三个不同平面,下列命题中正确的是()A.若则 B.若则C.若则 D.若则8.在直三棱柱(侧棱垂直于底面)中,若,,,则其外接球的表面积为()A. B. C. D.9.在等差数列中,若,则()A.10 B.15 C.20 D.2510.下列函数中,既是偶函数又在区间上单调递减的函数是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最小正周期为_______.12.已知数列{an}的前n项和Sn=2n-3,则数列{an}的通项公式为________.13.已知向量,满足,与的夹角为,则在上的投影是;14.在△ABC中,a、b、c分别为角A、B、C的对边,若b·cosC=c·cosB,且cosA=,则cosB的值为_____.15.已知正数、满足,则的最大值为__________.16.在中,,过直角顶点作射线交线段于点,则的概率为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知内角的对边分别是,若,,.(1)求;(2)求的面积.18.已知,.(1)求及的值;(2)求的值.19.如图,在四棱柱中,底面ABCD为菱形,平面ABCD,AC与BD交于点O,,,.(1)证明:平面平面;(2)求二面角的大小.20.在中,,点D在边AB上,,且.(1)若的面积为,求CD;(2)设,若,求证:.21.如图,在长方体中,,点为的中点.(1)求证:直线平面;(2)求证:平面平面;(3)求直线与平面的夹角.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
出现面积,可转化为观察,和余弦定理很相似,但是有差别,差别就是条件是形式,而余弦定理中是形式,但是我们可以注意到:,所以可以完成本题.【详解】由,所以在三角形中,再由正弦定理所以答案选择A.【点睛】本题很灵活,在常数4的处理问题上有点巧妙,然后再借助余弦定理及正弦定理,难度较大.2、B【解析】
由三视图判断该几何体是有三条棱两两垂直是三棱锥,结合三视图的数据可得结果.【详解】由三视图可得该几何体是如图所示的三棱锥,其中AB,BC,BP两两垂直,且,则和的面积都是1,的面积为2,在中,,则的面积为,所以该几何体的表面积为,故选:B.【点睛】三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.3、D【解析】
首先根据题意得到的图象关于轴对称,,再根据函数的单调性画出草图,解不等式即可.【详解】因为的图象关于对称,所以的图象关于轴对称,.又因为在上单调递增,所以函数的草图如下:所以或,解得:或.故选:D【点睛】本题主要考查函数的对称性,同时考查了函数的图象平移变换,属于中档题.4、B【解析】解:(1)中由于小区中各个家庭收入水平之间存在明显差别故(1)要采用分层抽样的方法(2)中由于总体数目不多,而样本容量不大故(2)要采用简单随机抽样故问题和方法配对正确的是:(1)Ⅲ(2)Ⅰ.故选B.5、C【解析】试题分析:模拟算法:开始:输入成立;,成立;,成立;,不成立,输出.故选C.考点:1.数学文化;2.程序框图.6、C【解析】
由均值和中位数定义求解.【详解】由题意,,由茎叶图知就是中位数,∴,∴.故选C.【点睛】本题考查茎叶图,考查均值与中位数,解题关键是读懂茎叶图.7、D【解析】
A项,可能相交或异面,当时,存在,,故A项错误;B项,可能相交或垂直,当
时,存在,,故B项错误;C项,可能相交或垂直,当
时,存在,,故C项错误;D项,垂直于同一平面的两条直线相互平行,故D项正确,故选D.本题主要考查的是对线,面关系的理解以及对空间的想象能力.考点:直线与平面、平面与平面平行的判定与性质;直线与平面、平面与平面垂直的判定与性质.8、A【解析】
根据题意,将直三棱柱扩充为长方体,其体对角线为其外接球的直径,可得半径,即可求出外接球的表面积.【详解】∵,,∠ABC=90∘,∴将直三棱柱扩充为长、宽、高为2、2、3的长方体,其体对角线为其外接球的直径,长度为,∴其外接球的半径为,表面积为=17π.故选:A.【点睛】本题考查几何体外接球,通常将几何体进行割补成长方体,几何体外接球等同于长方体外接球,利用长方体外接球直径等于体对角线长求出半径,再求出球的体积和表面积即可,属于简单题.9、C【解析】
设等差数列的公差为,得到,又由,代入即可求解,得到答案.【详解】由题意,设等差数列的公差为,则,又由,故选C.【点睛】本题主要考查了等差数列的通项公式的应用,其中解答中熟记等差数列的通项公式,准确计算是解答的关键,着重考查了计算与求解能力,属于基础题,.10、C【解析】
依次分析选项的奇偶性和在区间上的单调性即可得到答案.【详解】因为是奇函数,故A选项错误,因为是非奇非偶函数,故D选项错误,因为是偶函数,由函数图像知,在区间上单调递增,故B选项错误,因为是偶函数,由函数图像知,在区间上单调递减,故C选项正确.故选:C.【点睛】本题主要考查了函数的奇偶性的判断,二次函数单调性的判断,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
将三角函数进行降次,然后通过辅助角公式化为一个名称,最后利用周期公式得到结果.【详解】,.【点睛】本题主要考查二倍角公式,及辅助角公式,周期的运算,难度不大.12、【解析】
利用来求的通项.【详解】,化简得到,填.【点睛】一般地,如果知道的前项和,那么我们可利用求其通项,注意验证时,(与有关的解析式)的值是否为,如果是,则,如果不是,则用分段函数表示.13、1【解析】考查向量的投影定义,在上的投影等于的模乘以两向量夹角的余弦值14、【解析】
利用余弦定理表示出与,代入已知等式中,整理得到,再利用余弦定理表示出,将及的值代入用表示出,将表示出的与代入中计算,即可求出值.【详解】由题意,由余弦定理得,代入,得,整理得,所以,即,整理得,即,则,故答案为.【点睛】本题考查了解三角形的综合应用,高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.15、【解析】
直接利用均值不等式得到答案.【详解】,当即时等号成立.故答案为:【点睛】本题考查了均值不等式,意在考查学生的计算能力.16、【解析】
设,求出的长,由几何概型概率公式计算.【详解】设,由题意得,,∴的概率是.故答案为:.【点睛】本题考查几何概型,考查长度型几何概型.掌握几何概型概率公式是解题关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)在中,由正弦定理得,再由余弦定理,列出方程,即可求解得值;(2)由(1)求得,利用三角形的面积公式,即可求解三角形的面积.【详解】(1)在中,,,,由正弦定理得,由余弦定理得,解得或不合题意,舍去,(2)由(1)知,所以,所以的面积为.【点睛】本题主要考查了正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理,着重考查了运算与求解能力,属于基础题.18、(1),;(2).【解析】
(1)由已知,,利用,可得的值,再利用及二倍角公式,分别求得及的值;(2)利用倍角公式、诱导公式,可得原式的值为.【详解】(1)因为,,所以,所以,.(2)原式【点睛】若三个中,只要知道其中一个,则另外两个都可求出,即知一求二.19、(1)证明见解析;(2)﹒【解析】
(1)证面面垂直只需证一个平面内有一条直线和另一个平面垂直(2)通过作图需找二面角的平面角即可【详解】(1)证明:由平面ABCD,有;由四边形ABCD为菱形,所以AC⊥BD:又因为,所以平面,因为平面,所以平面平面,(2)过O作于E,连结BE,由(1)知平面,所以,又因为,,所以平面BDE,从而;由,,所以∠OEB为二面角的平面角.由为等边三角形且O为BD中点,有,,,由,有,由,有,从而.在中,,所以,即.综上,二面角的大小为﹒【点睛】面面垂直可通过线面垂直进行证明,二面角的平面角有正有负,解题时要注意结合题设关系进行正确判断20、(1)(2)证明见解析【解析】
(1)直接利用三角形的面积公式求得,再由余弦定理列方程求出结果;(2)两次利用正弦定理,结合两角差的正弦公式、二倍角的正弦公式进行恒等变换求出结果.【详解】(1)因为,即,又因为,,所以.在△中,由余弦定理得,即,解得.(2)在△中,,因为,则,又,由正弦定理,有,所以.在△中,,由正弦定理得,,即,化简得展开并整理得【点睛】以三角形为载体,三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公式,一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心.21、(1)见证明;(2)见证明;(3)【解析】
(1)连接,交于,则为中点,连接OP,可证明,从而可证明直线平面;(2)先证明AC⊥BD,,可得到平面,然后结合平面,可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 长春金融高等专科学校单招职业技能测试参考试题(附答案)
- 《GBT 40407-2021硅酸盐水泥熟料矿相X射线衍射分析方法》全新解读
- 水务自主创新项目的提出计划
- 陕西省渭南市尚德中学2018届高三上学期第一次摸底考试政治试题含解析
- 人机交互的未来趋势研究与应用
- 领导风格的马工学分析试题及答案
- 行业比较与投资比例试题及答案复习
- 鲁教版英语七上Unit 7 Im more outgoing than my sister Section B (单元整体+课时教学设计)2
- 把握趋势基金从业资格试题及答案
- 先进制造技术的应用及案例分享
- 区百色市2024-2025学年高一(上期)期末考试物理试卷(含答案详解)
- 2025-2030中国手术包行业市场发展分析及投资前景预测研究报告
- 护士聘用合同
- 离婚前规则观后感
- 行业标准:TSG T7007-2016 电梯型式试验规则
- 生产计划与物料管理PMC
- (完整)架空乘人装置(猴车)使用说明书
- 动态血糖监测新PPT课件
- 草种人工劳务补播技术实施方案
- 黄登边坡安全监测仪器安装埋设及施工期监测技术要求201079
- 政府专用标准席卡模板(华文新魏).
评论
0/150
提交评论