北京师范大学蚌埠附属学校2025届高一数学第二学期期末监测模拟试题含解析_第1页
北京师范大学蚌埠附属学校2025届高一数学第二学期期末监测模拟试题含解析_第2页
北京师范大学蚌埠附属学校2025届高一数学第二学期期末监测模拟试题含解析_第3页
北京师范大学蚌埠附属学校2025届高一数学第二学期期末监测模拟试题含解析_第4页
北京师范大学蚌埠附属学校2025届高一数学第二学期期末监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京师范大学蚌埠附属学校2025届高一数学第二学期期末监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若实数a、b满足条件,则下列不等式一定成立的是A. B. C. D.2.在正方体中,异面直线与所成角的大小为()A. B. C. D.3.已知数列的前项和为,且,若对任意,都有成立,则实数的取值范围是()A. B. C. D.4.某工厂利用随机数表对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,…,599,600从中抽取60个样本,如下提供随机数表的第4行到第6行:322118342978645407325242064438122343567735789056428442125331345786073625300732862345788907236896080432567808436789535577348994837522535578324577892345若从表中第6行第6列开始向右依次读取3个数据,则得到的第6个样本编号为()A.522 B.324 C.535 D.5785.已知数列的通项公式,前n项和为,若,则的最大值是()A.5 B.10 C.15 D.206.已知直线,直线,若,则直线与的距离为()A. B. C. D.7.一实体店主对某种产品的日销售量(单位:件)进行为期n天的数据统计,得到如下统计图,则下列说法错误的是()A. B.中位数为17C.众数为17 D.日销售量不低于18的频率为0.58.执行如图所示的程序框图,若输人的n值为2019,则S=A.-1 B.-12 C.19.某校高一年级有男生540人,女生360人,用分层抽样的方法从高一年级的学生中随机抽取25名学生进行问卷调查,则应抽取的女生人数为A.5 B.10 C.4 D.2010.赵爽是三国时期吴国的数学家,他创制了一幅“勾股圆方图”,也称“赵爽弦图”,如图,若在大正方形内随机取-点,这一点落在小正方形内的概率为,则勾与股的比为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,若,则实数________.12.如图,在直四棱柱中,,,,分别为的中点,平面平面.给出以下几个说法:①;②直线与的夹角为;③与平面所成的角为;④平面内存在直线与平行.其中正确命题的序号是__________.13.在中,角所对边长分别为,若,则的最小值为__________.14.设向量,,且,则______.15.设,满足约束条件,则的最小值是______.16.已知向量,若向量与垂直,则等于_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)从2,3,8,9中任取两个不同的数字,分别记为,求为整数的概率?(2)两人相约在7点到8点在某地会面,先到者等候另一个人20分钟方可离去.试求这两人能会面的概率?18.三个内角A,B,C对应的三条边长分别是,且满足.(1)求角的大小;(2)若,,求.19.如图所示,是正三角形,和都垂直于平面,且,,是的中点,求证:(1)平面;(2).20.已知函数,,(,为常数).(1)若方程有两个异号实数解,求实数的取值范围;(2)若的图像与轴有3个交点,求实数的取值范围;(3)记,若在上单调递增,求实数的取值范围.21.已知数列满足:.(1)若为等差数列,求的通项公式;(2)若单调递增,求的取值范围;

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

根据题意,由不等式的性质依次分析选项,综合即可得答案.【详解】根据题意,依次分析选项:对于A、,时,有成立,故A错误;对于B、,时,有成立,故B错误;对于C、,时,有成立,故C错误;对于D、由不等式的性质分析可得若,必有成立,则D正确;故选:D.【点睛】本题考查不等式的性质,对于错误的结论举出反例即可.2、C【解析】

连接、,可证四边形为平行四边形,得,得(或补角)就是异面直线与所成角,由正方体的性质即可得到答案.【详解】连接、,如下图:在正方体中,且;四边形为平行四边形,则;(或补角)就是异面直线与所成角;又在正方体中,,为等边三角形,,即异面直线与所成角的大小为;故答案选C【点睛】本题考查正方体中异面直线所成角的大小,属于基础题.3、B【解析】即对任意都成立,当时,当时,当时,归纳得:故选点睛:根据已知条件运用分组求和法不难计算出数列的前项和为,为求的取值范围则根据为奇数和为偶数两种情况进行分类讨论,求得最后的结果4、D【解析】

根据随机抽样的定义进行判断即可.【详解】第行第列开始的数为(不合适),,(不合适),,,,(不合适),(不合适),,(重复不合适),则满足条件的6个编号为,,,,,则第6个编号为本题正确选项:【点睛】本题主要考查随机抽样的应用,根据定义选择满足条件的数据是解决本题的关键.5、B【解析】

将的通项公式分解因式,判断正负分界处,进而推断的最大最小值得到答案.【详解】数列的通项公式当时,当或是最大值为或最小值为或的最大值为故答案为B【点睛】本题考查了前n项和为的最值问题,将其转化为通项公式的正负问题是解题的关键.6、A【解析】

利用直线平行的性质解得,再由两平行线间的距离求解即可【详解】∵直线l1:ax+2y﹣1=0,直线l2:8x+ay+2﹣a=0,l1∥l2,∴,且解得a=﹣1.所以直线l1:1x-2y+1=0,直线l2:1x-2y+3=0,故与的距离为故选A.【点睛】本题考查实数值的求法,是基础题,解题时要认真审题,注意直线平行的性质的灵活运用.7、B【解析】

由统计图,可计算出总数、中位数、众数,算得销量不低于18件的天数,即可求得频率.【详解】由统计图可知,总数,所以A正确;从统计图可以看出,从小到大排列时,中间两天的销售量的平均值为,所以B错误;从统计图可以看出,销量最高的为17件,所以C正确;从统计图可知,销量不低于18的天数为,所以频率为,所以D正确.综上可知,错误的为B故选:B【点睛】本题考查了统计中的总数、中位数、众数和频率的相关概念和性质,属于基础题.8、B【解析】

根据程序框图可知,当k=2019时结束计算,此时S=cos【详解】计算过程如下表所示:周期为6n2019k12…20182019S12-1…-k<n是是是是否故选B.【点睛】本题考查程序框图,选用表格计算更加直观,此题关键在于判断何时循环结束.9、B【解析】

直接利用分层抽样按照比例抽取得到答案.【详解】设应抽取的女生人数为,则,解得.故答案选B【点睛】本题考查了分层抽样,属于简单题.10、B【解析】

分别求解出小正方形和大正方形的面积,可知面积比为,从而构造方程可求得结果.【详解】由图形可知,小正方形边长为小正方形面积为:,又大正方形面积为:,即:解得:本题正确选项:【点睛】本题考查几何概型中的面积型的应用,关键是能够利用概率构造出关于所求量的方程.二、填空题:本大题共6小题,每小题5分,共30分。11、2或【解析】

根据向量平行的充要条件代入即可得解.【详解】由有:,解得或.故答案为:2或.【点睛】本题考查了向量平行的应用,属于基础题.12、①③.【解析】

利用线面平行的性质定理可判断①;利用平行线的性质可得直线与的夹角等于直线与所成的角,在中即可判断②;与平面所成的角即为与平面所成的角可判断③;根据直线与平面的位置关系可判断④;【详解】对于①,由,平面平面,则,又,所以,故①正确;对于②,连接,由,即直线与的夹角等于直线与所成的角,在中,,显然直线与的夹角不为,故②不正确;对于③,与平面所成的角即为与平面所成的角,根据三棱柱为直棱柱可知为与平面所成的角,在梯形中,,,,可解得与平面所成的角为,故③正确;对于④,由于与平面相交,故平面内不存在与平行的直线.故答案为:①③【点睛】本题是一道立体几何题目,考查了线面平行的性质定理,求线面角以及直线与平面之间的位置关系,属于中档题.13、【解析】

根据余弦定理,可得,然后利用均值不等式,可得结果.【详解】在中,,由,所以又,当且仅当时取等号故故的最小值为故答案为:【点睛】本题考查余弦定理以及均值不等式,属基础题.14、【解析】

根据即可得出,进行数量积的坐标运算即可求出x.【详解】∵;∴;∴x=﹣1;故答案为﹣1.【点睛】考查向量垂直的充要条件,以及向量数量积的坐标运算,属于基础题.15、1【解析】

根据不等式组,画出可行域,数形结合求解即可.【详解】由题可知,可行域如下图所示:容易知:,可得:,结合图像可知,的最小值在处取得,则.故答案为:1.【点睛】本题考查线性规划的基础问题,只需作出可行域,数形结合即可求解.16、2【解析】

根据向量的数量积的运算公式,列出方程,即可求解.【详解】由题意,向量,因为向量与垂直,所以,解得.故答案为:2.【点睛】本题主要考查了向量的坐标运算,以及向量的垂直关系的应用,着重考查了推理与运算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)分别求出基本事件总数及为整数的事件数,再由古典概型概率公式求解;(2)建立坐标系,找出会面的区域,用会面的区域面积比总区域面积得答案.【详解】(1)所有的基本事件共有4×3=12个,记事件A={为整数},因为,则事件A包含的基本事件共有2个,∴p(A)=;(2)以x、y分别表示两人到达时刻,则.两人能会面的充要条件是.建立直角坐标系如下图:∴P=.∴这两人能会面的概率为.【点睛】本题考查古典概型与几何概型概率的求法,考查数学转化思想方法,是基础题.18、⑴(2)【解析】

⑴由正弦定理及,得,因为,所以;⑵由余弦定理,解得【详解】⑴由正弦定理得,由已知得,,因为,所以⑵由余弦定理,得即,解得或,负值舍去,所以【点睛】解三角形问题,常要求正确选择正弦定理或余弦定理对三角形中的边、角进行转换,再进行求解,同时注意三角形当中的边角关系,如内角和为180度等19、(1)见解析.(2)见解析.【解析】

(1)先取的中点,连接,根据线面平行的判定定理,即可证明结论成立;(2)根据线面垂直的判定定理先证明平面,再由线面垂直的性质,即可得到.【详解】(1)取的中点,连接,可得,且.平面,平面,.又,,且,∴四边形是平行四边形,.又平面,平面,平面.(2)在中,,为的中点,.是正三角形,为的中点,,.平面,∴四边形是矩形,,又,平面.又平面,.,平面.又平面,.【点睛】本题主要考查线面平行以及线面垂直,熟记线面平行与垂线的判定定理以及性质定理即可,属于常考题型.20、(1)(2)(3)或【解析】

(1)由题意,可知只要,即可使得方程有两个异号的实数解,得到答案;(2)由题意,得,则,再由的图象与轴由3个交点,列出相应的条件,即可求解.(3)由题意得,分类讨论确定函数的单调性,即可得到答案.【详解】由题可得,,与轴有一个交点;与有两个交点综上可得:实数的取值范围或【点睛】本题主要考查了函数与方程的综合应用,以及分段函数的性质的综合应用,其中解答中认真审题,合理分类讨论及利用函数的基本性质求解是解答的关键,试题综合性强,属于难题,着重考查了分析问题和解答问题的能力,以及分类讨论思想和转化思想的应用.21、(1)(2)【解析】

(1)设出的通项公式,根据计算出对应的首项和公差,即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论